
Critical Design Review Report

ECE 4900 Capstone Design II

Team 4 Members:
Ryan Hackney (hackney.16)
Devin Hensley (hensley.203)

Emily Kong (kong.250)
Yoon Jae Lee (lee.6650)
Matt Stoner (stoner.124)

Yuan You (you.189)

Due Date: 12/3/2019
Professor: Haskell Jac Fought

Table of Contents

Table of Contents 2

1. Problem Statement 1

2. Requirement Specifications 1

3. Analysis of Constraints 1

4. Standards and Regulatory Issues 1

5. Design Concepts Considered 2

6. Design Proposal 3

7. System Schematics and Diagrams 5

8. Software and Algorithms 5

9. Testing and Analysis Planning 9

10. Data and Testing Analysis 10

11. Final Changes and Finished Design 10

10. Schedule and Work Breakdown Structure 13

11. Required Hardware, Equipment, and Facilities 13

12. Budget 14

13. Conclusion and Recommendations 15

Bibliography 16

Appendix A 17

Document Change Notice 18

Team Charter 19

Work Breakdown Chart 20

Gantt Chart 22

Appendix B 23

Section I: Physical Components 24

Bill of Materials 24

3D Printed Part Drawings 25

Electrical Schematics 28

Section II: Code 32

Section III: Mapping Algorithms, Theory 5758

Appendix C 62

Meeting Minutes: 63

September 05, 2019 63

September 12, 2019 64

September 17, 2019 65

October 03, 2019 66

October 23, 2019 67

November 12, 2019 68

November 21, 2019 68

November 27, 2019 69

Table of Figures:
Figure 1: Proposed Project Block Diagram ... 4

Figure 2: Design Proposal Build ... 5

Figure 3: Breadth-First Search Figure 4: Depth-First Search .. 6

Figure 5: Flood-Filled Algorithm ... 7

Figure 6: Dijkstra’s Algorithm, considering the motion cost in mountain terrain 7

Figure 7: A* Algorithm, cost 56.14 .. 8

Figure 8: Dynamic A* ... 8

Figure 9: Final Design Block Diagram ...12

Figure 10: Final Algorithm Communication Block Diagram ..12

Figure 11: Final Robot Build ..13

Figure B 1: Sparkfun Big Easy Driver ..28

Figure B 2: Wantai Stepper Motor ...29

Figure B 3: Circuit for motor drivers ...29

Figure B 4: HR SR04 Ultrasonic sensor ..30

Figure B 5: Circuit for sensors ...30

Figure B 6: UGV Schematic ..31

Figure B 7: Example of Dijkstra’s Algorithm ..59

Figure B 8: Dijkstra’s Algorithm, cost 56.14 ...60

Figure B 9: Best-First Search Algorithm, cost 76.08 ..60

Table of Tables:
Table 1: Budget Expenditure ...14

Table B 1: The process of Dijkstra’s Algorithm ..59

Executive Summary

The project began with the problem statement, and a solution was developed to solve
that statement. The team came up with a design for a UGV that would use sensors to
navigate an area while mapping that area and finding the optimal path from one point to
another. The original design consisted of a polypropylene frame with four stepper
motors using Ultrasonic sensors to sense the area surrounding the UGV. While
assembling and testing, problems came up that the team needed to address. The final
design stayed relatively the same as the original design; however, the number of motors
was reduced to make the robot more optimal.

This report goes into the process that the team followed while developing the design
and build of the UGV. . The proposal goes in-depth of the design for the UGV, and the
potential coding structure that was planned for the final design. This includes the risks
that the team predicted would arise as the project went forward. The team described the
final design including the physical components, wire connections, and the code in the
Raspberry Pi that was used to accomplish the task. The project schedule was affected
by some unforeseen issues that arose, but the team allowed extra time in the schedule
so the project was able to be delivered on time and within the required budget

1

1. Problem Statement

This product fulfills a demand for Unmanned Ground Vehicles (UGVs) that can navigate
areas deemed potentially hazardous to humans. An autonomous vehicle would allow
first responders or defense personnel to map out an unknown area, determine the
optimized exit path, and potentially create a 2D blueprint for the end-user.

2. Requirement Specifications

a. The UGV will be able to turn in a 1-inch radius

b. The UGV will calculate the best path through the area in under 5 minutes

c. The UGV will cost under $500 to produce

d. The UGV will fit in a 30cm x 30cm x 30cm cube

e. The battery life will last a minimum of 60 minutes

f. The UGV will locate walls and obstacles and avoid them with 5” of

clearance

g. The UGV will travel at approximately 1 m/s

h. The UGV will navigate an area with an incline of less than 3 degrees

i. The UGV will determine the quickest path out of all the options observed

j. The UGV will navigate and map one complete area before maintenance is

needed

3. Analysis of Constraints

The entire project needed to be designed to be within the budgeted $500 while still

meeting all the engineering requirements. . . Possible shock hazards and pinch points

in the design needed to be considered to reduce the risk to the user of the Autonomous

Unmanned Ground Vehicle. . . The final product is required to complete the task

without needing maintenance to be done in order for the desired reliability to be

achieved. . After the life cycle of the product is reached, all the components need to be

disposed of in the proper way. . Polypropylene is recycled at designation 5 [3], and

electronics/battery need to be brought to the proper facilities to be recycled.

4. Standards and Regulatory Issues

As stated in ASTM International Standards in section F3200 - 18a, an Autonomous

Unmanned Ground Vehicle (A-UGV) is defined as an “automatic, automated or

autonomous vehicle that operates while in contact with the ground without a human

operator” [4]. This is the definition that was followed to design the A-UGV. . Since the

design runs on a voltage less than 50 V, the device can be worked on while energized

2

without risk of serious electrical shock or burn according to NFPA 70E 130.2(A)(3) [1]. .

According to OSHA 1910.211(d)(44), a “pinch point” is any point that a part of the body

can be caught between moving and stationary parts of the equipment [1]. . The pinch

points on the design are around the wheels of the A-UGV where fingers or other body

parts could potentially be pinched against the chassis.

5. Design Concepts Considered

The team considered a number of different design concepts to fulfill the problem. Each

of these concepts was conceived through an analysis of a few different options for key

components that the UGV would need to have. The UGV was identified to need, at

baseline: sensors for navigation, a microcontroller for memory stage and computation, a

chassis for the body, and motors for navigation and mapping.

Different types of sensors considered included: SHARP GP2Y0A21K0F IR sensors,

TFMini LiDAR sensor, and the HC-SR04 ultrasonic sensor. The main three factors for

picking the sensor were measuring range, ease of use and price of the senor.

The SHARP sensor had a measuring range of 4 to 80cm this was decided that this

range was feasible but more range would be more practical. The output of the SHARP

is an analog voltage that is based on the angle of the reflected light that the sensor

emits. This would allow for the 7 to 9 sensor that would be needed to easily be

connected to a single microcontroller. The price of the sensor was $14.95 for a total of

around $104.65‒$134.55 depending on the amount of sensors that was settled on. This

left the total budget spent to under $400, with a contingency budget of approximately

$100.

The TFMini sensor measuring range was .3 to 12m which had a greatly improved range

over the SHARP, but the measured range of under .3m was not accurate- an important

feature for the UGV. The TFMini uses UART to communicate data, but with 7 or 9

sensors, the team would have to purchase a UART to I2C to allow all the sensors to

communicate with the microcontroller. The cost of TFMini was $44.75 which makes it

the most expensive out of the 3 sensor. The total cost would be $320.25 which would

not leave enough budget for the rest of the project.

The team ended up choosing the HC-SR04 sensor (shown in Section I of the Appendix

B), due to the fact that the range was midrange, at 4cm to 4m. The sensor has a digital

output but also needs digital input meaning the microcontroller will need at least 14 I/O

pins. The price was $3.95, but due to its availability from past projects using the same

sensors, the sensors are already available at no cost to the budget. Because these

3

sensors were available immediately, the team was also given the most exposure to

interfacing with these sensors.

Several types of microcontrollers were considered: the Arduino UNO, Raspberry Pi 3/4

and MSP430 Launchpad. I/O pins and functionality were the two key factors the team

analyzed when choosing between design concepts for this part.

The Arduino UNO has 14 digital and 6 analog I/O pins, which are just under the

minimum amount of pins for either sensor. This meant that an I/O expander would have

to be purchased. The Arduino is able to efficiently run a script multiple times, but the

project would need to be able to run multiple scripts simultaneously. The Arduino also

has many shields to increase the functionality of the microcontroller. The microcontroller

was already available from past projects and would not need to come out of the budget.

Raspberry Pi has 24 I/O pins- more than enough for the minimum amount of pins

needed. The Raspberry Pi has the ability to run multiple scripts because of its capability

of having its own operating software. This added functionality, as it can allow programs

to be run and even create or edit scripts, all on one Raspberry Pi. This controller was

also available from past projects. Based on the factors from above, this was the

microcontroller decided on to be the optimum choice for meeting the project’s needs.

MSP430 Launchpad has 16 digital and 8 analog I/O pins that meet the minimum

requirement but if more sensors had to be added then an expander would have to be

purchased. MSP has low power draw but can only run one script like the Arduino.

Making it lose functionality the project needs. This microcontroller would also add no

cost to the budget as there were some from past projects. .

6. Design Proposal

Shown below, in Figure 1, was the hardware block diagram of the UGV. The power fed

into voltage regulators that step the power source down to the voltages required by

each of the four motors, the seven ultrasonic sensors, and the Raspberry Pi. The

Raspberry Pi then communicated to a laptop to relay important mapping feedback.

4

Figure 1: Proposed Project Block Diagram

The final design concept, shown below in Figure 2, originally included four DC stepper

motors that drive up to four wheels simultaneously. The wheel diameter was determined

to be greater than 5 inches to allow space for the DC stepper motors underneath the

chassis. These motors were affixed to a 2-tier polypropylene pegboard chassis using

motors mounts that were screwed into the chassis. The chassis dimensions were

determined to be 22 inches by 18 inches and ⅛ inch thick for each sheet. The wheels

were mounted to the shafts of each motor and secured with set screws. Ultrasonic

sensors were utilized for both navigation and mapping of the vehicle, with the help of

the HC-SR04 sensor. The vehicle included seven of these ultrasonic sensors with the

team allowing for the potential use of more or less, dependent on future testing results.

The Raspberry Pi was determined to be the best fit for the microcontroller and was used

to implement autonomous navigation and mapping. With 24 input/output pins, it was

satisfactory for controlling all the ultrasonic sensors as well as the motor drivers and the

stepper motors. The Raspberry Pi used approximately 5 Watts (W) of power under load

which was sufficient for extended battery life, while the DC stepper motors were the

source of main power consumption. To account for the total high power consumption of

this robot, the team recommended powering the four motors for 60 minutes, with the

help of two batteries, to meet design requirements. Unit tests for each of the sensors

individually, as well as running simultaneously, were also recommended before testing

the entire robot together after the final assembly.

5

Figure 2: Design Proposal Build

7. System Schematics and Diagrams

For detail-level schematics of system parts and assemblies, please refer to Section II of

Appendix B. Figure B3 shows the circuit for the motor drivers that uses the connections

from figures B1(motor driver) and B2(motor). The circuit had 5 connections to each

driver and one to the Raspberry Pi that ground the whole circuit. The whole circuit was

grounded, as each of the 5 connections (EN, M1, M2, M3 and GND ports) all need to be

zero to enable the FETs to drive motors and have full step resolution. The rest of the

connections for the motor driver were A+, A-, B+, and B- which connect to the motor by

red, blue, green, and black wires respectively.

The wiring diagram for each of the ultrasonic sensors (Figure B4) is shown in Figure B5.

The top half rail of the circuit had an output from the Raspberry Pi from Vcc. This rail

provided power to all the sensors. The next rail had an output from the Raspberry Pi

that connected to the trigger pin, so all the sensors were triggered at once. The

connections below the trigger rail were from each Echo pin on the sensors. This sent a

signal to the Raspberry Pi after going through a voltage divider of 1k and 2k resistors.

The last rail had an output from Raspberry Pi from GND to ground all the sensors and

for the voltage divider. The overall UGV schematic can be found in Figure A6.

8. Software and Algorithms

The team developed a pseudocode, shown below, before beginning the processing of

programming the mapping portion of the project. After writing this pseudocode, the team

went through multiple kinds of mapping algorithms before finishing the final prototype

6

with the A* algorithm. More information on the theory of each of these algorithms may

be found in Section III of Appendix B.

Pseudocode of Entire Process:

while Start is NOT Goal,

LOOP START:

1) Detecting Obstacle surrounding

2) Update map

3) Using A* or D* algorithm to search optimal path

4) Moving to next node along the optimal path

5) Mark current location as Start

LOOP END

Figure 3: Breadth-First Search Figure 4: Depth-First Search

Shown in Figures 3 and 4, above, are two kinds of search algorithms: breadth-first

search algorithm (BFS), and depth-first search algorithm (DFS). An algorithm called

“Flood-Fill Algorithm” uses the concept of BFS or DFS (shown below in Figure 5). It

starts searching from the starting point, first traversing the neighboring points around

the starting point, and then traversing the neighboring points of the point that has been

traversed, and gradually spreading out until the endpoint is found. It then uses

backpropagation to following the cost decreasing, from the endpoint to the starting

point, to find the optimal path.

One of the faults of this program is that it blindly searches for all possibilities, as

opposed to considering the cost of each choice. Therefore, it has low efficiency.

7

Figure 5: Flood-Filled Algorithm

In 1959, Edsger W. Dijkstra published his Shortest Path First algorithm, also known as

Dijkstra’s algorithm. Unlike the aforementioned strategy, Dijksra’s algorithm considers

the cost from the current node to the next node and the total cost in history. After

comparing the cost of all possible choices, it then generates an optimal path through

backpropagation. An example of Dijkstra’s algorithm is shown below in Figure 6.

Figure 6: Dijkstra’s Algorithm, considering the motion cost in mountain terrain

The goal of this algorithm was to find out the optimal policy by minimizing the total cost,

and is based on the concept of dynamic programming. Since all the other path planning

algorithms are based on Dijkstra’s algorithm, additional information on how it works has

been included in Section III of Appendix B.

8

Figure 7: A* Algorithm, cost 56.14

Finally, the team worked toward the final mapping algorithm that was used for this

prototype. In comparison to the previous two algorithms, the A* algorithm is faster than

Dijkstra’s Algorithm and maintains its optimality by having the same solution cost (the

total length of path). Based on the theory discussed in the Mapping Algorithm Theory

section of Appendix B, the most advantageous balance between velocity and

optimalityoptimibility is the A* algorithm itself. Figure 10, above, depicts an example of

the A* algorithm.

Figure 8: Dynamic A*

9

To solve the problem defined in the beginning of this project, the algorithm needed to

have the ability to update map information in real time. This involved both the detection

strategy, as well as the ability to continuously generate the optimal path to the exit,

given information updates over time. This method is shown above, in Figure 11, and is

the mapping algorithm the final prototype was programmed with.

9. Testing and Analysis Planning

In order to test the UGV along with each milestone, the team came up with a series of

test plans for the overall robot as well as individual components and subsystems. The

testing and analysis plans were as follows:

 Pre-Build Testing and Preparation:

1. Test one ultrasonic sensor with the Raspberry Pi

2. Test all the ultrasonic sensors with the Raspberry Pi; gain familiarity for

simultaneous data I/O

a. Set the reference value of each of the sensors to calibrate

b. Determine rotation rate correlation with distance

3. Test the motors with the Raspberry Pi

4. Test the sensors with the preliminary mapping algorithm

 Test Plan for Navigation Trial Run:

1. Test a distance for each one step of robot navigation

2. Test a number of steps that the robot can rotate exactly 90 degrees

3. Test a number of steps that the robot can rotate exactly 180 degrees

4. Test each stepper can run correctly and all steppers can run

simultaneously during multi-thread programming

5. Leave the robot running for 60 minutes to ensure a sustainable battery life

that meets the requirements

 Test Plan for Mapping Trial Run:

10. Implement and test the A* algorithm

a. Test that the robot is able to communicate to the laptop and pass

information back to the user on each of the distances and “nodes”

b. The obstacles, previous location, the current location information stored

inside Raspberry Pi for converting and updating data.

11. Test coordinate transformation (3D to 2D) by multiplying matrix

12. Test current attitude of the robot by doing dot product with minor bias

13. Test ultrasonic decision making (Priority and Pre-setting)

10

14. Test accuracy of an updated map with verifying the current existence of

obstacles

15. Test real-time decision making and mapping from D* Algorithm. Using real-time

detecting and updating map with ultrasonic sensors

10. Data and Testing Analysis

Ultrasonic Sensors Test(Test (individual test):

1. Measured out various set distances measured in cm testing each sensor

to find an acceptable error range from the set distances to be 5-15cm.

2. Measured distance apart from sensors by incrementing sensors close until

their measurements started to interfere with each other to 10cm or

greater.

3. By simply applying a sliding filter to avoid ultrasonic sensors detect

something as an obstacle accidentally.

 Ultrasonic Sensors and Motors(Motors (Software):

1. Unit test for each part; stepper motors moving adjustment for forward

movement of 8 directions and rotating movement of 8 directions. .

2. Adjust for alignment before hallway stand to assign reference and fixed

data values.

3. Object-Oriented Programming approach with real-time feedback

3.

11. Final Changes and Finished Design

After initial product shipping, combined with the evaluation of the results from the testing

detailed above, the team discovered multiple issues that had to be changed from the

initial design concept for completion of a working final product. The first issue was

availability of appropriately sized wheels. Because the robot needed wheels >5 inches

in diameter to allow for the large stepper motors, specifically sized wheels and hub

mounts were needed. The team was unable to find a pair of which neither was sold out

and would arrive before the end of the project term date. To mitigate this concern, the

team was able to imitate a similar design to the originally proposed wheel, and 3D

printed individual wheels. This mitigation saved both time and money for the team.

The second issue was the space and cable management for each of the three batteries,

along with the four motor drivers, soldered boards, and Raspberry Pi. To alleviate this

problem, the team added spacers to increase the space between the two levels of

polypropylene chassis, allowing for two batteries to sit in the middle layer of the robot.

Large holes were drilled down through the top layer of the robot in strategic locations,

which allowed for cables to be contained through the robot instead of hanging outside

11

the bounds of the UGV. Wires that led to the same device were labeled and soldered or

taped together to prevent accidental shorts and disconnections while the robot was

moving.

Because the robot initially utilized four stepper motors, the combined weight of the

motors proved to be difficult to manage. During the testing runs, the loaded robot

exhibited little success when trying to navigate turns and obstacles. After discussion,

the team decided to replace the initial four-wheel-drive system with a two-wheel-drive

system, switching the front two DC stepper motors out for mounted castor wheels. The

castor wheel mounts were 3D-printed to the appropriate height of the robot and then

drilled into the chassis.

The team encountered several issues with the initial design concept throughout the

build and testing phases of this project. However, there were also aspects of the final

product that were carried through with success from the initial design concept. One of

these was the use of the polypropylene chassis. The chassis was sturdy enough to

provide adequate support for the robot, and the two-layer structure allowed an

additional room to store parts. The hole pattern of the polypropylene board also

provided some mitigation for cable management. The ultrasonic sensors that were used

proved to be accurate for the purposes of this problem and were user-friendly to work

with. The DC stepper motors were another good choice because of their power,

regardless of the terrain of the landscape. Lastly, the mitigation of using 3D-printed

wheels saved both times and kept the design as it was originally intended. The team

then used rubber tape to add cushion and friction for the robot to navigate easily over

smooth surfaces. Figure 3 and Figure 4, shown below, illustrate the final logic block

diagram as well as the final build of the robot.

12

Figure 9: Final Design Block Diagram

Figure 10: Final Algorithm Communication Block Diagram

13

Figure 11: Final Robot Build

10. Schedule and Work Breakdown Structure

Each of the tasks that were needed to complete and reach milestones for this project

was assigned to specific team members. These team members were responsible for

taking the lead on these tasks, with the option of additional assistance from team

members to push the deliverable. The task list along with its assigned work breakdown

structure can be found in Appendix A. The team also developed a Gantt chart, which

was used to track each of these tasks by the start and end date, along with the

approximate amount of time each item would take to complete. This Gantt chart was

updated through the process to reflect the team’s current progress and adjust for project

components that needed additional time. This chart can be found in Appendix A,

following the Work Breakdown Structure.

11. Required Hardware, Equipment, and Facilities

This project required at least one empty room for testing. This testing room was then

escalated to a room with obstacles that the robot had to avoid, and multiple exit paths.

The team used empty classrooms and hallways in Dreese and Caldwell to test and

troubleshoot the UGV. The team used a Raspberry Pi for feedback control and real-time

decision making in mapping. The UGV required power management equipment to keep

14

a consistent power source to operate all the components for the required specification

of 60 minutes. A laptop was used to communicate with the Raspberry Pi.

12. Budget

A number of key components needed to build this product were sourced from the

supplies of previous capstone groups. This included the two DC stepper motors, seven

to nine ultrasonic sensors, and a Raspberry Pi 4. Key items that the group purchased

include the polypropylene board to construct a two-tier chassis, a battery pack for the

Raspberry Pi, two gyroscopes, four motor drivers, four-set screw hubs, and

miscellaneous wires and screws. Shown in Table 1, below, from the provided $500

budget, the team used $358.73, leaving $141.27 to spare. However, the team removed

and replaced some of the design proposal items with alternatives to mitigate the

challenges discovered in the testing phase. Additional parts were 3D-printed and used

to hold the ultrasonic sensors in place. The group decided to move from the original

four-wheel drive to two-wheel drive, eliminating weight concerns. In the final Bill of

Materials, located in Section II of Appendix B, the amount of materials used to construct

the final robot totaled to $221.74, or approximately $137 under the total budget spent.

Table 1: Budget Expenditure

15

13. Conclusion and Recommendations

With the expanding market of autonomous vehicles and the sensationalism of drones,

this product serves to combine some of the useful features of both. The development of

an Unmanned Ground Vehicle (UGV) can be applicable to a variety of situations,

whether it be through the defense sector, or a search and rescue mission. Where it

might be unsafe for humans to venture, the design of this vehicle allows it to safely

navigate areas with no prior knowledge of the scene it may be entering. Furthermore,

this vehicle is capable of mapping out a room and determining the closest point of exit

for personnel that may then head into the situation as a backup.

Since it is a primary prototype, there are numerous hardware enhancements worth

pursuing for future work. Among these is optimizing the pairing of the motors and

chassis material to be sturdy, but lightweight. While ultrasonic sensors were a useful

first method of detection in the initial prototype, future groups should look toward using

more robust methods of sensing, such as LIDAR. Cable management also played a

huge role in the build of this prototype. Optimizing wire and cable management into the

chassis design itself would prove more efficient for ease of use as well as assembling

and disassembling. Overall, the budget played a limiting factor in the design concept

and part choices the team decided on. Additional testing also showed that some parts

were purchased that were unnecessary. With greater foresight, future groups could use

these design and test challenges to optimize the budget available.

The software provided the real functionality of the robot without being limited by as

many external factors, such as the budget. The software algorithm used could undergo

further refinement to improve the efficacy and precision of the robot. Given improved

consideration of possible ground turbulence or possible elevated surfaces built into the

hardware, future software could work together with the hardware to optimize such

features.

While the team made efforts to mitigate the in-aesthetic appearance caused by the lack

of professional cable management, future work could be done to improve on the

outward development of the robot. For example, a transparent dome-like fixture could

be placed over the top of the robot, customized with the placement of the ultrasonic

sensors. This would contain the cables while providing some protection from

unexpected water or physical damage. In addition, the transparency feature could allow

for visual feedback in the form of a color LED.

Overall, the team used its resources to develop the best prototype possible given the

constraints at the time. While the robot was able to perform effectively, there are

definitive measures that can be taken in the future to ensure a smoother design process

that can allow for further optimizations and improvements.

16

Bibliography

1. Gray, Bobby J. “NFPA 70E - Proposed 2018 Edition.” Nfpa.org, 2017,

www.nfpa.org/assets/files/AboutTheCodes/70E/Proposed_TIA_1265_NFPA_70E

.pdf.

2. “Occupational Safety and Health Administration.” 1910.211 - Definitions. |

Occupational Safety and Health Administration, www.osha.gov/laws-

regs/regulations/standardnumber/1910/1910.211.

3. “Polypropylene.” The Association of Plastic Recyclers, 2018,

plasticsrecycling.org/pp.

4. Yoon, Soocheol, and Roger Bostelman. “Analysis of Automatic through

Autonomous - Unmanned Ground Vehicles (A-UGVs) Towards Performance

Standards.” IEEE Xplore, 2019, ieeexplore.ieee.org/document/8790421.

5. “A * Algorithm for Path Planning”, Yunxi Community, Alibaba Cloud, 9 Jan. 2019,

https://yq.aliyun.com/articles/685477?utm_content=g_1000036267.

6. Koenig, Sven, and Maxim Likhachev. “D* Lite.” Eighteenth National Conference

on Artificial Intelligence, 1 Aug. 2002, pp. 476–483.

17

Appendix A

18

Document Change Notice

Date Change

10/8/2019 Initial Release

12/3/2019 Final Release

(+):
Team picture
Ultrasonic sensor, motor driver and UGV schematics
Updated design, budget, and schedule
Testing process and results
Design changes, Risks and Mitigations
Logic for Mapping Algorithm
Final BOM
Python Code

19

Team Charter

20

Work Breakdown Chart

21

22

Gantt Chart

23

Appendix B

24

Section I: Physical Components

Bill of Materials

Part Description Quantity Price Location Bought From

Polypropylene Pegboard (9"x11") 2 $41.83 Grainger

Stepper Motor NEMA 23 2 $38.69 Mouser

Stepper Motor Mounts 2 $19.78 Newegg

Motor Drivers 2 $39.90 SparkFun

1/2" Spacers 8 $1.79 Grainger

Ultrasonic Sensors 7 $0.00 Found in Lab

3D Printed Side Sensor Mount 4 $0.00 3D printed

3D Printed Front Sensor Mount 2 $0.00 3D printed

3D Printed Underneath Sensor

Mount 1 $0.00 3D printed

Portable Bank, 5V 1 $29.99 Micro Center

Power Bank, 12V 1 $0.00 Found in Lab

3D Printed 4.5" Wheels 2 $0.00 3D printed

1/4" Wheel-to-Shaft Mounting Hub 2 $9.98 SparkFun

1/4"-28 Bolts, 2" 4 $2.20 ACE Hardware

#6-32 Bolts, 1/2" 16 $3.20 ACE Hardware

#8-32 Nuts and 3/4" Bolts 32 $5.98 Lowe's

#8 Washers 16 $4.98 Lowe's

Raspberry Pi 1 $0.00 Found in Lab

Prototype Board 2 $0.00 Found in Lab

Male Break Away Pins 2 $1.50 SparkFun

Small Heatsink 4 $7.80 SparkFun

#4-40 Bolts, 1/2" 100 $1.95 Grainger

#4-40 Nuts 100 $2.04 Grainger

Omni Wheel Mounts 2 $0.00 3D Printed

Roller Ball Bearing Casters 2 $10.13 Amazon

 Total $221.74

25

3D Printed Part Drawings

26

27

28

Electrical Schematics

Figure B 1: Sparkfun Big Easy Driver

29

Figure B 2: Wantai Stepper Motor

Figure B 3: Circuit for motor drivers

30

Figure B 4: HR SR04 Ultrasonic sensor

Figure B 5: Circuit for sensors

31

Figure B 6: UGV Schematic

32

Section II: Code

#!/usr/bin/env python

encoding: utf-8

from numpy import *

def H(a,b):

 D=1

 # # Manhattan Distance

 # return D*(abs(a[0,0]-b[0,0])+abs(a[0,1]-b[0,1]))

 # Eculidean Distance

 return D*(abs(a[0,0]-b[0,0])**2+abs(a[0,1]-b[0,1])**2)

if __name__ == '__main__':

 a=mat([[3,4,5]])

 b=mat([[4,5,6]])

 print("Unit Test - H cost: ", H(a,b))

#!/usr/bin/env python

encoding: utf-8

from numpy import *

from isSamePosition import isSamePosition

def isObstacle(m,obstacle):

 for index in range(0,len(obstacle[:,0])):

 if isSamePosition(obstacle[index,:],m[0:2]):

 flag=True

 return flag

 flag=False

 return flag

if __name__ == '__main__':

 obstacle=mat([[0,0],

 [1,1],

 [2,2],

 [3,3],

 [4,4],

 [5,5],

 [6,6]])

33

 e=mat([[6,6]])

 print("Unit Test - isObstacle: ", isObstacle(e,obstacle))

#!/usr/bin/env python

encoding: utf-8

from numpy import *

def isSamePosition(a,b):

 result=False

 if a[0,0]==b[0,0] and a[0,1]==b[0,1]:

 result=True

 return result

if __name__ == '__main__':

 c=mat([[1,2]])

 d=mat([[1,2]])

 print("Unit Test - isSamePosition: ", isSamePosition(c,d))

#!/usr/bin/env python

encoding: utf-8

import RPi.GPIO as gpio

import time

class led_flash:

 #initialize

 def __init__(self, green_led_pin, blue_led_pin):

 self.green_led_pin=green_led_pin

 self.blue_led_pin=blue_led_pin

 # gpio setup

 gpio.setmode(gpio.BCM) # Broadcom Mode, Index of Pin

 gpio.setup(self.green_led_pin, gpio.OUT)

 gpio.setup(self.blue_led_pin, gpio.OUT)

 gpio.output(self.green_led_pin,False)

 gpio.output(self.blue_led_pin,False)

 def toggle(self, led_pin, interval):

 # print(led_pin)

34

 while True:

 if led_pin=="GREEN":

 gpio.output(self.green_led_pin,True)

 time.sleep(interval)

 gpio.output(self.green_led_pin,False)

 time.sleep(interval)

 elif led_pin=="BLUE":

 gpio.output(self.blue_led_pin,True)

 time.sleep(interval)

 gpio.output(self.blue_led_pin,False)

 time.sleep(interval)

if __name__ == '__main__':

 print("LED MODULE SELF TESTING")

 gpio.cleanup()

 led=led_flash(17,27)

 led.toggle("GREEN", 1)

#!/usr/bin/env python

encoding: utf-8

from numpy import *

def MotionModel():

 D=1 # x y cost

 next_move=mat([[1, 0, D*1], # Move right

 [0, 1, D*1], # Move up

 [-1, 0, D*1], # Move left

 [0, -1, D*1]]) # Move down

 # [1, 1, D*1.414], # Move up-right

 # [-1, -1, D*1.414], # Move down-left

 # [-1, 1, D*1.414], # Move up-left

 # [1, -1, D*1.414]])# Move down-right

 return next_move

if __name__ == '__main__':

 print("Unit Test - MotionModel: ", print(MotionModel()))

35

#!/usr/bin/env python

encoding: utf-8

from numpy import *

import time

from isObstacle import isObstacle

from ultra3 import *

def Ultrasonic(path_map):

 left_flag=0

 right_flag=0

 up_flag=0

 down_flag=0

 # TRIG = 23 #Associate pin 23 to TRIG

 # FLOOR = 24 #Associate pin 24 to

ECHO

 # FRONT = 25 #Associate pin 24 to ECHO

 # RIGHT1 = 8

 # RIGHT2 = 7

 # LEFT1 = 20

 # LEFT2 = 16

 # BACK = 12

 # ultrasonic_echo_set=[FLOOR, FRONT, RIGHT1, RIGHT2, LEFT1, LEFT2,

BACK]

 # ultrasonic=UltraSonic_dev(TRIG,ultrasonic_echo_set)

 # # waiting for ultrasonic sensors

 # left_flag=ultrasonic.detect(direction='left')

 # right_flag=ultrasonic.detect(direction='right')

 # up_flag=ultrasonic.detect(direction='front')

 # down_flag=ultrasonic.detect(direction='back')

 # simulation

 left_position=mat([[path_map.current_position[0,0]-

1,path_map.current_position[0,1]]])

36

right_position=mat([[path_map.current_position[0,0]+1,path_map.current_pos

ition[0,1]]])

up_position=mat([[path_map.current_position[0,0],path_map.current_position

[0,1]+1]])

down_position=mat([[path_map.current_position[0,0],path_map.current_positi

on[0,1]-1]])

 if isObstacle(left_position,path_map.obstacle):

 left_flag=1

 if isObstacle(right_position,path_map.obstacle):

 right_flag=1

 if isObstacle(up_position,path_map.obstacle):

 up_flag=1

 if isObstacle(down_position,path_map.obstacle):

 down_flag=1

 return left_flag, right_flag, up_flag, down_flag

#!/usr/bin/env python

encoding: utf-8

from numpy import *

def GetBoundary(map_size):

 boundary=mat([[0,0]])

 for i1 in range(1,map_size+2):

 boundary=vstack((boundary,[0,i1]))

 for i2 in range(1,map_size+2):

 boundary=vstack((boundary,[i2,0]))

 for i3 in range(1,map_size+2):

 boundary=vstack((boundary,[map_size+1,i3]))

 for i4 in range(1,map_size+1):

 boundary=vstack((boundary,[i4,map_size+1]))

 return boundary

37

if __name__ == '__main__':

 print("Unit Test - GetBoundary: \n", GetBoundary(5))

#!/usr/bin/env python

encoding: utf-8

from numpy import *

from isSamePosition import isSamePosition

def FindList(m,open_list,close_list):

 if len(open_list):

 for index in range(0, len(open_list[:,0])):

 if isSamePosition(open_list[index,:],m[0:2]):

 flag=1

 return flag

 if len(close_list):

 for index in range(0, len(close_list[:,0])):

 if isSamePosition(close_list[index,:],m[0:2]):

 flag=2

 return flag

 flag=3

 return flag

if __name__ == '__main__':

 M=mat([[5,6,3,1,2]])

 OPEN_LIST=mat([[1,2,6],

 [6,6,6],

 [7,6,6],

 [7,6,6],

 [8,6,6]])

 CLOSE_LIST=mat([[3,4,6],

 [6,6,6],

 [7,6,6],

 [7,6,6],

 [5,6,6]])

 print("Unit Test - FindList: ", FindList(M,OPEN_LIST,CLOSE_LIST))

#!/usr/bin/env python

38

encoding: utf-8

from numpy import *

from isSamePosition import isSamePosition

from GetBoundary import GetBoundary

from Ultrasonic import Ultrasonic

WILL BE USED BY ULTRASONIC

def random_pick(some_list, probabilities):

 x = random.uniform(0,1)

 cumulative_probability = 0.0

 for item, item_probability in zip(some_list, probabilities):

 cumulative_probability += item_probability

 if x < cumulative_probability:

 break

 return item

def GetObstacle(path_map,mode):

 left_detect_flag=0

 right_detect_flag=0

 up_detect_flag=0

 down_detect_flag=0

 if mode=='random':

 # generate Obstacles

new_obstacle_cordinate=mat(random.randint(1,path_map.map_size+1,size=[path

_map.map_size*path_map.map_size,2]))

 # pick #num_of_obstacle of obstacles generated

 new_obstacle=new_obstacle_cordinate[0:path_map.num_of_obstacle,:]

 # remove Starting Point and Goal

 removed_list=[]

 for index in range(0,len(new_obstacle[:,0])):

 if

isSamePosition(new_obstacle[index,:],path_map.start_position) or

isSamePosition(new_obstacle[index,:],path_map.end_position):

 # Add Start/Goal to Remove List

 removed_list.append(index)

 # Remove the element in Remove List in row

 new_obstacle=delete(new_obstacle,removed_list,axis=0)

39

 elif mode=='detect':

 new_obstacle=mat([[0,0]])

 print("Ultrasonic is detecting...")

 # ultrasonic not created yet

left_detect_flag,right_detect_flag,up_detect_flag,down_detect_flag=Ultraso

nic(path_map)

 # simulation

 if left_detect_flag:

 temp_obstacle=mat([[path_map.current_position[0,0]-

1,path_map.current_position[0,1]]])

 new_obstacle=vstack((new_obstacle,temp_obstacle))

 if right_detect_flag:

temp_obstacle=mat([[path_map.current_position[0,0]+1,path_map.current_posi

tion[0,1]]])

 new_obstacle=vstack((new_obstacle,temp_obstacle))

 if up_detect_flag:

temp_obstacle=mat([[path_map.current_position[0,0],path_map.current_positi

on[0,1]+1]])

 new_obstacle=vstack((new_obstacle,temp_obstacle))

 if down_detect_flag:

temp_obstacle=mat([[path_map.current_position[0,0],path_map.current_positi

on[0,1]-1]])

 new_obstacle=vstack((new_obstacle,temp_obstacle))

 # # real situation

 # ultrasonic_detect_vector=mat(([left_detect_flag],

 # [right_detect_flag],

 # [up_detect_flag],

 # [down_detect_flag]))

 #

obstacle_in_map=path_map.trasnmit_matrix*ultrasonic_detect_vector

40

 # if obstacle_in_map[0,0]:

 # temp_obstacle=mat([[path_map.current_position[0,0]-

1,path_map.current_position[0,1]]])

 # new_obstacle=vstack((new_obstacle,temp_obstacle))

 # if obstacle_in_map[1,0]:

 #

temp_obstacle=mat([[path_map.current_position[0,0]+1,path_map.current_posi

tion[0,1]]])

 # new_obstacle=vstack((new_obstacle,temp_obstacle))

 # if obstacle_in_map[2,0]:

 #

temp_obstacle=mat([[path_map.current_position[0,0],path_map.current_positi

on[0,1]+1]])

 # new_obstacle=vstack((new_obstacle,temp_obstacle))

 # if obstacle_in_map[3,0]:

 #

temp_obstacle=mat([[path_map.current_position[0,0],path_map.current_positi

on[0,1]-1]])

 # new_obstacle=vstack((new_obstacle,temp_obstacle))

 # remove first all-zero row

 new_obstacle=delete(new_obstacle,0,axis=0)

 # print(new_obstacle)

 return new_obstacle

if __name__ == '__main__':

 from PATHPLANNING import pathplanning

 map_size=5

 start_position=mat([[1,1]])

 end_position=mat([[4,4]])

 path_map=pathplanning(start_position,end_position,map_size)

 path_map.current_position=path_map.start_position

 path_map.start_position=mat([[1,1]])

 path_map.end_position=mat([[4,4]])

 path_map.obstacle=mat([[0,0],

 [1,0],

 [2,0],

 [3,0],

41

 [1,2],

 [2,1],

 [0,1]])

 path_map.num_of_obstacle=5

 print("Unit Test - GetObstacle: \n",

GetObstacle(path_map,mode='detect'))

#!/usr/bin/env python

encoding: utf-8

from numpy import *

import time

from isSamePosition import isSamePosition

def GetPath(close_list,start):

 path=mat([[0,0]]) # Create an empty path, zero will be removed after

OPTIMAL PATH found

 index=0

 while True:

 path=vstack((path,close_list[index,0:2]))

 if isSamePosition(close_list[index,0:2],start):

 break

 for i in range(0,len(close_list[:,0])):

 if isSamePosition(close_list[i,0:2],close_list[index,3:5]):

 index=i

 break

 # remove first all-zero row from OPTIMAL PATH

 path=delete(path,0,axis=0)

 return path

#!/usr/bin/env python

encoding: utf-8

import RPi.GPIO as gpio

import time

class stepper:

42

 def __init__(self, FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT,

ms1_pin, ms2_pin, ms3_pin, enable_pin, mode, step_time=0.0045):

 self.front_left_step_pin = FRONT_LEFT[0]

 self.front_left_dir_pin = FRONT_LEFT[1]

 self.front_right_step_pin = FRONT_RIGHT[0]

 self.front_right_dir_pin = FRONT_RIGHT[1]

 #self.back_left_step_pin = BACK_LEFT[0]

 #self.back_left_dir_pin = BACK_LEFT[1]

 #self.back_right_step_pin = BACK_RIGHT[0]

 #self.back_right_dir_pin = BACK_RIGHT[1]

 self.ms1=ms1_pin

 self.ms2=ms2_pin

 self.ms3=ms3_pin

 self.enable=enable_pin

 self.mode=mode

 # gpio setup

 gpio.setmode(gpio.BCM) # Broadcom Mode, Index of Pin

 gpio.setup(self.front_left_step_pin, gpio.OUT)

 gpio.setup(self.front_left_dir_pin, gpio.OUT)

 gpio.setup(self.front_right_step_pin, gpio.OUT)

 gpio.setup(self.front_right_dir_pin, gpio.OUT)

 #gpio.setup(self.back_left_step_pin, gpio.OUT)

 #gpio.setup(self.back_left_dir_pin, gpio.OUT)

 #gpio.setup(self.back_right_step_pin, gpio.OUT)

 #gpio.setup(self.back_right_dir_pin, gpio.OUT)

 gpio.setup(self.ms1, gpio.OUT)

 gpio.setup(self.ms2, gpio.OUT)

 gpio.setup(self.ms3, gpio.OUT)

 gpio.setup(self.enable, gpio.OUT)

 # initial

 gpio.output(self.front_left_step_pin, False)

 gpio.output(self.front_left_dir_pin, False)

 gpio.output(self.front_right_step_pin, False)

 gpio.output(self.front_right_dir_pin, False)

 #gpio.output(self.back_left_step_pin, False)

 #gpio.output(self.back_left_dir_pin, False)

 #gpio.output(self.back_right_step_pin, False)

 #gpio.output(self.back_right_dir_pin, False)

43

 gpio.output(self.ms1, False)

 gpio.output(self.ms2, False)

 gpio.output(self.ms3, False)

 gpio.output(self.enable, False)

 self.step_time = step_time

 self.steps_per_rev = 1600

 self.current_position = 0

 # def steps(self, step_count=1):

 # print("Moving Forward")

 # #当step_count为正数的时候，设置dir引脚为低电平。否则为高电平。

 # if step_count > 0:

 # print("Moving Forward")

 # gpio.output(self.dir, False)

 # else:

 # print("Moving Backward")

 # gpio.output(self.dir, True)

 # for i in range(abs(step_count)):

 # gpio.output(self.step, True)

 # time.sleep(self.step_time)

 # gpio.output(self.step, False)

 # time.sleep(self.step_time)

 # self.current_position += step_count

 def move_F(self, step_count=200):#260

 print("FFFFFFFFFFFFF")

 # DIRECTION

 # right side motor

 gpio.output(self.front_right_dir_pin, False)

 #gpio.output(self.back_right_dir_pin, True)

 # left side motor

 gpio.output(self.front_left_dir_pin, True)

 #gpio.output(self.back_left_dir_pin, False)

 # STEP

 for i in range(abs(step_count)):

44

 gpio.output(self.front_left_step_pin, True)

 gpio.output(self.front_right_step_pin, True)

 #gpio.output(self.back_left_step_pin, True)

 #gpio.output(self.back_right_step_pin, True)

 time.sleep(self.step_time)

 gpio.output(self.front_left_step_pin, False)

 gpio.output(self.front_right_step_pin, False)

 #gpio.output(self.back_left_step_pin, False)

 #gpio.output(self.back_right_step_pin, False)

 time.sleep(self.step_time)

 def move_L(self, step_count=130):

 print("LLLLLLLLLLLLLL")

 # DIRECTION

 # right side motor

 gpio.output(self.front_right_dir_pin, True)

 #gpio.output(self.back_right_dir_pin, True)

 # left side motor

 gpio.output(self.front_left_dir_pin, True)

 #gpio.output(self.back_left_dir_pin, True)

 # STEP

 for i in range(abs(step_count)):

 gpio.output(self.front_left_step_pin, True)

 gpio.output(self.front_right_step_pin, True)

 #gpio.output(self.back_left_step_pin, True)

 #gpio.output(self.back_right_step_pin, True)

 time.sleep(self.step_time)

 gpio.output(self.front_left_step_pin, False)

 gpio.output(self.front_right_step_pin, False)

 #gpio.output(self.back_left_step_pin, False)

 #gpio.output(self.back_right_step_pin, False)

 time.sleep(self.step_time)

 def move_R(self, step_count=130):

 print("FRRRRRRRRRRRRR")

 # DIRECTION

 # right side motor

 gpio.output(self.front_right_dir_pin, False)

 #gpio.output(self.back_right_dir_pin, True)

45

 # left side motor

 gpio.output(self.front_left_dir_pin, False)

 #gpio.output(self.back_left_dir_pin, True)

 # STEP

 for i in range(abs(step_count)):

 gpio.output(self.front_left_step_pin, True)

 gpio.output(self.front_right_step_pin, True)

 #gpio.output(self.back_left_step_pin, True)

 #gpio.output(self.back_right_step_pin, True)

 time.sleep(self.step_time)

 gpio.output(self.front_left_step_pin, False)

 gpio.output(self.front_right_step_pin, False)

 #gpio.output(self.back_left_step_pin, False)

 #gpio.output(self.back_right_step_pin, False)

 time.sleep(self.step_time)

 def move_U(self, step_count=259):

 print("UUUUUUUUU")

 # DIRECTION

 # right side motor

 gpio.output(self.front_right_dir_pin, False)

 #gpio.output(self.back_right_dir_pin, True)

 # left side motor

 gpio.output(self.front_left_dir_pin, False)

 #gpio.output(self.back_left_dir_pin, True)

 # STEP

 for i in range(abs(step_count)):

 gpio.output(self.front_left_step_pin, True)

 gpio.output(self.front_right_step_pin, True)

 #gpio.output(self.back_left_step_pin, True)

 #gpio.output(self.back_right_step_pin, True)

 time.sleep(self.step_time)

 gpio.output(self.front_left_step_pin, False)

 gpio.output(self.front_right_step_pin, False)

 #gpio.output(self.back_left_step_pin, False)

 #gpio.output(self.back_right_step_pin, False)

 time.sleep(self.step_time)

 # def relative_angle(self, angle):

46

 # def absolute_angle(self, angle):

if __name__ == '__main__':

 print("STEPPER MODULE SELF TESTING")

 #gpio.cleanup()

 ms1_pin=14

 ms2_pin=14

 ms3_pin=14

 enable_pin=14

 front_left_step_pin=26

 front_left_dir_pin=19

 back_left_step_pin=6

 back_left_dir_pin=13

 front_right_step_pin=2

 front_right_dir_pin=3

 back_right_step_pin=17

 back_right_dir_pin=27

 FRONT_LEFT=[front_left_step_pin, front_left_dir_pin]

 FRONT_RIGHT=[front_right_step_pin, front_right_dir_pin]

 BACK_LEFT=[back_left_step_pin, back_left_dir_pin]

 BAKC_RIGHT=[back_right_step_pin, back_right_dir_pin]

stepper=stepper(FRONT_LEFT,FRONT_RIGHT,BACK_LEFT,BAKC_RIGHT,ms1_pin,ms2_pi

n,ms3_pin,enable_pin,0)

 # right side backward

 # stepper.steps(100)

 # left side front

 stepper.move_U()

 time.sleep(0.75)

 stepper.move_F()

#!/usr/bin/env python

encoding: utf-8

47

from numpy import *

from STEPPER import stepper

def Move(last_direction_vector,current_position,next_position):

 move_direction=""

 # # if last_direction_vector is no exist yet (first step), default UP

 # try:

 # last_direction_vector

 # except NameError:

 # last_direction_vector = mat([[0,1]])

 # else:

 # pass

 # print("last direction,", last_direction_vector)

 if current_position[0,0]<next_position[0,0] and

current_position[0,1]==next_position[0,1]:

 direction_str="RIGHT"

 # direction vector

 direction_vector=mat([[1,0]])

 trasnmit_matrix=mat([[0,0,0,1],

 [0,0,1,0],

 [1,0,0,0],

 [0,1,0,0]])

 elif current_position[0,0]>next_position[0,0] and

current_position[0,1]==next_position[0,1]:

 direction_str="LEFT"

 # direction vector

 direction_vector=mat([[-1,0]])

 trasnmit_matrix=mat([[0,0,1,0],

 [0,0,0,1],

 [0,1,0,0],

 [1,0,0,0]])

 elif current_position[0,0]==next_position[0,0] and

current_position[0,1]<next_position[0,1]:

 direction_str="UP"

 # direction vector

 direction_vector=mat([[0,1]])

 trasnmit_matrix=mat([[1,0,0,0],

48

 [0,1,0,0],

 [0,0,1,0],

 [0,0,0,1]])

 elif current_position[0,0]==next_position[0,0] and

current_position[0,1]>next_position[0,1]:

 direction_str="DOWN"

 # direction_vector vector

 direction_vector=mat([[0,-1]])

 trasnmit_matrix=mat([[0,1,0,0],

 [1,0,0,0],

 [0,0,0,1],

 [0,0,1,0]])

 # print("now direction", direction_vector)

 # calculate relative angle by dot product

 cos_theta=(last_direction_vector-

mat([[0.02,0.01]]))*(direction_vector+mat([[0.01,0.02]])).transpose()

 if cos_theta == -1.0304 or cos_theta == -0.9703999999999999:

 move_direction="U-turn"

 transmit_vector=mat([[0,-1]])

 Stepper.move_U()

 Stepper.move_F()

 elif cos_theta == 1.0096 or cos_theta == 0.9896:

 move_direction="Forward"

 transmit_vector=mat([[0,1]])

 Stepper.move_F()

 elif cos_theta == -0.0204 or cos_theta == -0.0003999999999999976 or

cos_theta == 0.0196:

 move_direction="Rightward"

 transmit_vector=mat([[1,0]])

 Stepper.move_R()

 Stepper.move_F()

49

 elif cos_theta == -0.00040000000000000105 or cos_theta == 0.0396 or

cos_theta == -0.0404:

 move_direction="Leftward"

 transmit_vector=mat([[-1,0]])

 Stepper.move_L()

 Stepper.move_F()

 last_direction_vector=direction_vector

 print("MOVE "+move_direction)

 return current_position, trasnmit_matrix, last_direction_vector

if __name__ == "__main__":

 current_grid=mat([[12,12]])

 next_grid=mat([[12,11]])

 last_dir=mat([[1,0]])

 Move(last_dir,current_grid,next_grid)

#!/usr/bin/env python

encoding: utf-8

import RPi.GPIO as GPIO #Import GPIO library

import time #Import time library

GPIO.setmode(GPIO.BCM) #Set GPIO pin numbering

class UltraSonic_dev:

 FLOOR_BOOL = False #Associate pin 24

to ECHO

 FRONT_BOOL = False #Associate pin 24

to ECHO

 RIGHT1_BOOL = False

 RIGHT2_BOOL = False

 BACK_BOOL = False

 LEFT2_BOOL = False

 LEFT1_BOOL = False

 # Initialize

 def __init__(self, TRIG, ultrasonic_echo_set):

 # setup

 self.TRIG=TRIG

50

 self.ultrasonic_echo_set=ultrasonic_echo_set

 self.distance=[99999,99999]

 GPIO.setup(self.TRIG,GPIO.OUT) #Set pin as GPIO

out

 for echo_pin in self.ultrasonic_echo_set:

 GPIO.setup(echo_pin,GPIO.IN) #Set pin as

GPIO in

 def detecting_process(self, side_set):

 pulse_start=[0,0]

 pulse_end=[0,0]

 pulse_duration=[0,0]

 i=0

 for echo_pin in side_set:

 # Trig the ultrasonic soundwave

 GPIO.output(self.TRIG, False) #Set TRIG as LOW

 time.sleep(0.01) #Delay of 2

seconds

 GPIO.output(self.TRIG, True) #Set TRIG as

HIGH

 time.sleep(0.00001) #Delay of 0.00001

seconds

 GPIO.output(self.TRIG, False) #Set TRIG as LOW

 while GPIO.input(echo_pin)==0: #Check whether

the ECHO is LOW

 pulse_start[i] = time.time() #Saves the last

known time of LOW pulse

 while GPIO.input(echo_pin)==1: #Check whether

the ECHO is HIGH

 pulse_end[i] = time.time() #Saves the last

known time of HIGH pulse

 pulse_duration[i] = pulse_end[i] - pulse_start[i] #Get pulse

duration to a variable

 self.distance[i] = pulse_duration[i] * 17150 #Multiply

pulse duration by 17150 to get distance

51

 self.distance[i] = round(self.distance[i], 2)

#Round to two decimal points

 i=i+1

print('First:{:g},

Second:{:g}'.format(self.distance[0],self.distance[1]))

 time.sleep(0.001)

 def detect(self, direction=None):

 if direction=='left':

 print("Left Ultrasonic is detecting")

 left_ultrasonic_set=self.ultrasonic_echo_set[4:5+1]

while True:

self.detecting_process(left_ultrasonic_set)

 k=0

 avg_distance=[]

 while k<10:

 self.detecting_process(left_ultrasonic_set)

 avg_distance.append(self.distance[0])

 k=k+1

 return sum(avg_distance)/10.0

 if direction=='right':

 print("Right Ultrasonic is detecting")

 right_ultrasonic_set=self.ultrasonic_echo_set[2:3+1]

while True:

self.detecting_process(right_ultrasonic_set)

 k=0

 avg_distance=[]

 while k<10:

 self.detecting_process(right_ultrasonic_set)

 avg_distance.append(self.distance[0])

 k=k+1

 return sum(avg_distance)/10.0

 if direction=='front':

 print("Front Ultrasonic is detecting")

 front_ultrasonic_set=self.ultrasonic_echo_set[1:1+1]

while True:

self.detecting_process(front_ultrasonic_set)

 k=0

 avg_distance=[]

52

 while k<10:

 self.detecting_process(front_ultrasonic_set)

 avg_distance.append(self.distance[0])

 k=k+1

 return sum(avg_distance)/10.0

 if direction=='back':

 print("Back Ultrasonic is detecting")

 back_ultrasonic_set=self.ultrasonic_echo_set[6:6+1]

while True:

self.detecting_process(back_ultrasonic_set)

 k=0

 avg_distance=[]

 while k<10:

 self.detecting_process(back_ultrasonic_set)

 avg_distance.append(self.distance[0])

 k=k+1

 return sum(avg_distance)/10.0

if __name__=='__main__':

 print("Unit Test: Ultrasonic")

GPIO.cleanup()

 TRIG = 21

 # 20 16 12 7 8 23 24

 FLOOR = 20

 FRONT = 23

 RIGHT1 = 12

 RIGHT2 = 8

 LEFT1 = 7

 LEFT2 = 16

 BACK = 24

 ultrasonic_echo_set=[FLOOR, FRONT, RIGHT1, RIGHT2, LEFT1, LEFT2, BACK]

 ultrasonic=UltraSonic_dev(TRIG,ultrasonic_echo_set)

 flag=ultrasonic.detect(direction='back')

 print(flag)

#!/usr/bin/env python

encoding: utf-8

from numpy import *

53

from H import H

from isSamePosition import isSamePosition

from MotionModel import MotionModel

from FindList import FindList

from GetBoundary import GetBoundary

from GetObstacle import GetObstacle

from isObstacle import isObstacle

from GetPath import GetPath

def Astar(obstacle,start,goal):

 G=0 # NEXT MOVE cost

 path=mat([[0,0]]) # Create an empty path, zero will be removed after

OPTIMAL PATH found

 open_list=mat([[start[0,0]], # current position x

 [start[0,1]], # current position y

 [G+H(start,goal)], # total cost F=G+H, 当前点到

终点的距离

 [start[0,0]], # last position x, parent

set

 [start[0,1]]]).transpose() # last position y, parent

set

 # initialize CLOSE LIST, this all-zero row will be removed after

OPTIMAL PATH found

 close_list=mat([[0,0,0,0,0]])

 # open_list=mat([[0,0]])

 # open_list=delete(open_list,0,axis=0)

 next_move=MotionModel() # set NEXT position motion model

 findFlag=False # flag to determine whether the path can be found

 # print(open_list)

 while findFlag==False:

 # first column of OPEN LIST is empty

 if len(open_list)==0:

 print("No path to GOAL.")

 return

 # sorting open list based on total cost

 open_list=open_list[lexsort((open_list.view(ndarray)[:,2],))]

 # print(open_list)

54

 # compare the current position to GOAL position

 if isSamePosition(open_list[0,0:2],goal):

 print("Optimal path found.")

 # put first row of OPEN LIST into CLOSE LIST

 close_list=vstack((open_list[0,:],close_list))

 # remove the least cost MOVE from OPEN LIST

 open_list=delete(open_list,0,axis=0)

 findFlag=True

 break

 # calculate the cost in NEXT MOTION MODEL

 for index in range(0,len(next_move[:,0])):

 m=mat([[open_list[0,0]+next_move[index,0]], # pick NEXT MOVE

position x

 [open_list[0,1]+next_move[index,1]], # pick NEXT MOVE

position y

 [0]]).transpose()

 G=next_move[index,2]+H(m[0:2],goal) # NEXT MOVE cost G

 m[0,2]=G

 # print("m =",m)

 # skip if current position is OBSTACLE

 if isObstacle(m,obstacle):

 # print("[{}, {}] is OBSTACLE".format(m[0,0],m[0,1]))

 continue

 # check that whether the next movement choice is in OPEN LIST

or CLOSE LIST

 list_flag=FindList(m,open_list,close_list)

 # print("list flag =",list_flag)

 # if it is in OPEN LIST or CLOSE LIST, skip

 if list_flag==1: # in OPEN LIST

 # print("[{}, {}] is in OPEN LIST".format(m[0,0],m[0,1]))

 continue

 elif list_flag==2: # in CLOSE LIST

 # print("[{}, {}] is in CLOSE LIST".format(m[0,0],m[0,1]))

 continue

 else:

 # append this MOVE and current position into OPEN LIST

55

 # print("[{}, {}] has appended into OPEN

LIST".format(m[0,0],m[0,1]))

 temp=hstack((m,[[open_list[0,0]]],[[open_list[0,1]]]))

 open_list=vstack((open_list,temp))

 # print(open_list)

 # if the NEXT MOVE is neither in OPEN LIST nor CLOSE LIST

 if findFlag==False:

 # append the least cost MOVE into CLOSE LIST, as moved

 close_list=vstack((open_list[0,:],close_list))

 # print("[{}, {}] has added into

PATH".format(close_list[0,0],close_list[0,1]))

 # remove the least cost MOVE from OPEN LIST

 open_list=delete(open_list,0,axis=0)

 # remove the last all-zero row in CLOSE LIST

 close_list=delete(close_list,-1,axis=0)

 # print(close_list)

 # generate OPTIMAL PATH

 path=GetPath(close_list,start)

 return path

if __name__ == '__main__':

 start_point=mat([[1,1]])

 end_point=mat([[4,4]])

 obstacle=GetBoundary(5)

 print("Unit Test - Astar: ", Astar(obstacle,start_point,end_point))

#!/usr/bin/env python

encoding: utf-8

import time, RPi.GPIO, threading

from LED import led_flash

from STEPPER import stepper

pin statement

#green_led_pin=17

#blue_led_pin=27

ms1_pin=14

ms2_pin=14

56

ms3_pin=14

enable_pin=14

front_left_step_pin=26

front_left_dir_pin=19

back_left_dir_pin=13

back_left_step_pin=6

front_right_dir_pin=3

front_right_step_pin=2

back_right_dir_pin=27

back_right_step_pin=17

initialize

#led=led_flash(green_led_pin,blue_led_pin)

front_left_stepper=stepper(front_left_step_pin,front_left_dir_pin,ms1_pin,

ms2_pin,ms3_pin,enable_pin,0)

back_left_stepper=stepper(back_left_step_pin,back_left_dir_pin,ms1_pin,ms2

_pin,ms3_pin,enable_pin,0)

front_right_stepper=stepper(front_right_step_pin,front_right_dir_pin,ms1_p

in,ms2_pin,ms3_pin,enable_pin,0)

back_right_stepper=stepper(back_right_step_pin,back_right_dir_pin,ms1_pin,

ms2_pin,ms3_pin,enable_pin,0)

threads=[]

task1=threading.Thread(target=front_left_stepper.steps, args=(500,))

threads.append(task1)

task2=threading.Thread(target=back_left_stepper.steps, args=(500,))

threads.append(task2)

task3=threading.Thread(target=front_right_stepper.steps, args=(-500,))

threads.append(task3)

task4=threading.Thread(target=back_right_stepper.steps, args=(-500,))

threads.append(task4)

if __name__ == '__main__':

 print("RUNNING...")

 try:

 for t in threads:

 t.setDaemon(True)

 t.start()

 t.join()

 except KeyboardInterrupt:

 RPi.GPIO.cleanup()

57

58

Section III: Mapping Algorithms, Theory

Dynamic Programming Algorithm:

where

xt : state, trajectory

ut: action

γt*: optimal policy

J: total operation cost

Vt: optimal cost-to-go

gt: operation cost

Dijkstra’s Algorithm:

where n is the index of next state,

G is the operation cost function as the total actual cost from the start point to the next

state,

F is the total evaluation cost, also known as priority.

59

Figure B 7: Example of Dijkstra’s Algorithm

Table B 1: The process of Dijkstra’s Algorithm

By backpropagating to reach endpoint G, the optimal policy is E to G, and C to E and A

to C.

Best-First Search Algorithm:

60

where H is the heuristic estimated cost-to-go, estimated distance from next state n to

the goal.

Best-First Search Algorithm greatly speeded up the search but sacrificed the optimality.

Many times, the strategy is not optimal apparently.

Figure B 8: Dijkstra’s Algorithm, cost 56.14

Figure B 9: Best-First Search Algorithm, cost 76.08

A* Algorithm, Dynamic Programming

In 1968, Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute

(now SRI International) first published A* (A star) algorithm, which is a Best-First or

informed search idea and using heuristics to guide its search, and it can be seen as a

combination with Dijkstra's algorithm and Best-First Search Algorithm.

61

A* Algorithm:

For each step, A* algorithm tries to find the minimum F in all the possible next searching

choices, and by minimizing the operation cost

to find out the optimal one until the goal is reached. After that, using backpropagation,

from goal to start, it backtracks these choices to generate the policy γ*, which is the

optimal path.

62

Appendix C

63

Meeting Minutes:

September 05, 2019

Meeting with the Professor Fought

Team 4: Go Go Power Rangers

Date: September 5, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,

Yuan You, Professor Fought

● Matt starts by explaining the idea of the fire fighting UGV

● Fought points out the specific functions robot will have to accomplish for that idea

○ Small autonomous vehicle can’t hold enough extinguisher

● Decided to account for navigation and mapping only

● Optimize the scale to something we can manage while also holding all

components needed

● A problem statement needs to be determined that will work with the project

● Stretch goals will be added to the project if extra time is there

● Project will have 3 different parts: Robot Build, Navigation, and Mapping

64

September 12, 2019

Interim Meeting with the Professor Fought

Team 4: Go Go Power Rangers

Date: September 12, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,

Yuan You, Professor Fought

● Emily explains UGV to map out room and show back to user

● Professor Fought says keep story consistent throughout report

● Don’t include prototype ideas until the design report

● Plan for mapping hallways in Caldwell, Baker Systems, and Dreese

● System block diagram is a representation of the product

● Work Breakdown Structure (WBS) is a list of tasks along with who is assigned

those tasks

● Milestones are events, not tasks

○ A task is research which software to use, milestone is a software is

selected

65

September 17, 2019

Meeting with the Professor Fought

Team 4: Go Go Power Rangers

Date: September 17, 2019

Attendance: Ryan Hackney, Emily Kong, Yoon Jae Lee, Yuan You, Professor Fought

● Discussed schedule to create design concepts for next week

● Took a look at motors and sensors in storage for potential use

● Plan to meet and pull out specific storage parts on Thursday

● Confirmed each section of the team (Navigation, Mapping, Robots)

66

October 03, 2019

Meeting with the Professor Fought

Team 4: Go Go Power Rangers

Presentation Meeting:

Date: October 3, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,

Yuan You, Professor Fought

● Team 4 presents problem statement, design concepts and technical evaluation

● Professor Fought says

● Team 4 presents moving mechanism and algorithm

● Professor Fought says algorithm should be clear and precise.

● Team 4 presents testing plans, task, milestones and schedules

67

October 23, 2019

Meeting with the Professor Fought

Team 4: Go Go Power Rangers

Parts Receiving and New purchase order Meeting

Date: October 22, 2019

Attendance: Emily Kong, Yoon Jae Lee, Matt Stoner, Professor Fought

● Received ordered parts and aware of shipping delay for some parts.

● Team 4 discussed power supply and battery charging

● Finalize two batteries and one battery for Pi. Checked eligibility and charging

conditions.

● Team 4 announced a new purchase order to Professor Fought

● Professor Fought informs how to pickup order in person

● Plan to meet Thursday for assembly more with 3D printed wheels.

68

November 12, 2019

Meeting with the Professor Fought

Team 4: Go Go Power Rangers

Date: November 12, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,

Yuan You, Professor Fought

● Demonstrated the assembled prototype to Professor Fought

● Discussed optimized size and locating.

● Professor Fought gave advice about sensor operation and the idea of board

connection.

● The team discussed circuit wiring

● Plan for operating in hallways of Caldwell and Dreese with updated code.

November 21, 2019

Meeting with the Professor Fought

69

Team 4: Go Go Power Rangers

Date: November 21, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,

Yuan You, Professor Fought

● Demonstrated presentation about Critical Design Review

● Professor Fought gave advice about finessing our projects

● Plan to update the document in more detail about electrical connections and

software.

November 27, 2019

Meeting with the Professor Fought

Date: November 26, 2019

70

Attendance: Yoon Jae Lee, Yuan You, Professor Fought

● Discussed about rotating issue.

● Professor Fought gave advice about friction and wheels.

● Plan to update some parts for effective and constant moving mechanism.

