Critical Design Review Report
ECE 4900 Capstone Design Il

Team 4 Members:
Ryan Hackney (hackney.16)
Devin Hensley (hensley.203)

Emily Kong (kong.250)
Yoon Jae Lee (lee.6650)
Matt Stoner (stoner.124)

Yuan You (you.189)

Due Date: 12/3/2019
Professor: Haskell Jac Fought

Table of Contents

Table of Contents

© © N o 0 bk~ 0w Db

e e e =
A =

13.

Problem Statement

Requirement Specifications

Analysis of Constraints

Standards and Regulatory Issues

Design Concepts Considered

Design Proposal

System Schematics and Diagrams

Software and Algorithms

Testing and Analysis Planning
Data and Testing Analysis
Final Changes and Finished Design
Schedule and Work Breakdown Structure
Required Hardware, Equipment, and Facilities
Budget

Conclusion and Recommendations

Bibliography

Appendix A

Document Change Notice

Team Charter
Work Breakdown Chart
Gantt Chart

Appendix B

Section I: Physical Components

Bill of Materials
3D Printed Part Drawings

Electrical Schematics

Section Il: Code

Section lll: Mapping Algorithms, Theory

Appendix C

Meeting Minutes:

© o1 o W N P P P P DN

ol
~

QXYW YR NNNNNDNB B R e e e e e e

W R N © 00 & B W N © © 0 N o 01l h w W O O

September 05, 2019 63

September 12, 2019 64
September 17, 2019 65
October 03, 2019 66
October 23, 2019 67
November 12, 2019 68
November 21, 2019 68
November 27, 2019 69

Table of Figures:

Figure 1: Proposed Project BIOCK DIiagram........cccocooiiiiiiiiiiiei et e e e eeneaaes 4
Figure 2: Design Proposal BUIld............oueiiiiiiiiiiiiiiiiiiiiicieeeeeeeeeeeeeeeeeeeee ettt 5
Figure 3: Breadth-First Search Figure 4: Depth-First Search...........cc..coooiiiiiiiiii e, 6
Figure 5: Flood-Filled AlQOItNIMooiiiiiiiiiiiiiiiiiieeeeeeeeeee ettt 7
Figure 6: Dijkstra’s Algorithm, considering the motion cost in mountain terraincc......... 7
Figure 7: A* AlgOIthm, COSE 6. 14 e et e e e e e e eareaaes 8
FIQUIE 8: DYNAIMIC A¥ ...ttt ettt ettt ettt ettt ettt e et e e et e e e e e e e e e e e e eeeeees 8
Figure 9: Final Design BIOCK DIagramuuciiiiiciiiiiiiiie et e e e e e eanaaaaas 12
Figure 10: Final Algorithm Communication Block Diagram.............cccceeeiieeiiiiiiiiiiiie e, 12
Figure 11: Final RODOt BUII...........ooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt 13
Figure B 1: Sparkfun Big EASY DIVETcouiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt 28
Figure B 2: Wantai StEPPEr MOTONccoeiieeeiiiice e e e et e e e e e e e eaeraaaas 29
Figure B 3: CirCuit fOr MOLOr AIIVEIS.......ooiiiiiiiiiiiiiiiieiiieee ettt 29
Figure B 4: HR SR04 UIFASONIC SENSONcvvviiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 30
Figure B 5: CIrCUIL fOF SENSOIS.....uuuuiiii e e e e e e e e e e e e et e e e e e e e e eaneaaaaaas 30
Figure B 6: UGV SCREMALICcevviiiiiiiiiiiiiiiiiiiiiiee ettt 31
Figure B 7: Example of Dijkstra’s Algorithmoooviiiiiiiiiiiiiiieeeeee 59
Figure B 8: Dijkstra’s Algorithm, COSt 56.14..........ooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 60
Figure B 9: Best-First Search Algorithm, COSt 76.08............cooviiiiiiiiiiiiiiiiiiiieeeee 60

Table of Tables:
Table 1: Budget EXPENAItUE.........ooeiiiei et e e e e e e e e e ar e e e e e aeaeeanee 14

Table B 1: The process of Dijkstra’s Algorithm ..., 59

Executive Summary

The project began with the problem statement, and a solution was developed to solve
that statement. The team came up with a design for a UGV that would use sensors to
navigate an area while mapping that area and finding the optimal path from one point to
another. The original design consisted of a polypropylene frame with four stepper
motors using Ultrasonic sensors to sense the area surrounding the UGV. While
assembling and testing, problems came up that the team needed to address. The final
design stayed relatively the same as the original design; however, the number of motors
was reduced to make the robot more optimal.

This report goes into the process that the team followed while developing the design
and build of the UGV-—. The proposal goes in-depth of the design for the UGV, and the
potential coding structure that was planned for the final design. This includes the risks
that the team predicted would arise as the project went forward. The team described the
final design including the physical components, wire connections, and the code in the
Raspberry Pi that was used to accomplish the task. The project schedule was affected
by some unforeseen issues that arose, but the team allowed extra time in the schedule
so the project was able to be delivered on time and within the required budget

1. Problem Statement

This product fulfills a demand for Unmanned Ground Vehicles (UGVSs) that can navigate
areas deemed potentially hazardous to humans. An autonomous vehicle would allow
first responders or defense personnel to map out an unknown area, determine the
optimized exit path, and potentially create a 2D blueprint for the end-user.

2. Requirement Specifications

The UGV will be able to turn in a 1-inch radius

The UGV will calculate the best path through the area in under 5 minutes
The UGV will cost under $500 to produce

The UGV will fit in a 30cm x 30cm x 30cm cube

The battery life will last a minimum of 60 minutes

The UGV will locate walls and obstacles and avoid them with 5” of
clearance

The UGV will travel at approximately 1 m/s

The UGV will navigate an area with an incline of less than 3 degrees

The UGV will determine the quickest path out of all the options observed
The UGV will navigate and map one complete area before maintenance is
needed

-0 Q0o

=T Ta

3. Analysis of Constraints

The entire project needed to be designed to be within the budgeted $500 while still
meeting all the engineering requirements—. . Possible shock hazards and pinch points
in the design needed to be considered to reduce the risk to the user of the Autonomous
Unmanned Ground Vehicle—. . The final product is required to complete the task
without needing maintenance to be done in order for the desired reliability to be
achieved-—. After the life cycle of the product is reached, all the components need to be
disposed of in the proper way-—. Polypropylene is recycled at designation 5 [3], and

electronics/battery need to be brought to the proper facilities to be recycled.

4. Standards and Regulatory Issues
As stated in ASTM International Standards in section F3200 - 18a, an Autonomous
Unmanned Ground Vehicle (A-UGV) is defined as an “automatic, automated or
autonomous vehicle that operates while in contact with the ground without a human
operator” [4]. This is the definition that was followed to design the A-UGV-—. Since the
design runs on a voltage less than 50 V, the device can be worked on while energized

without risk of serious electrical shock or burn according to NFPA 70E 130.2(A)(3) [1]—.
According to OSHA 1910.211(d)(44), a “pinch point” is any point that a part of the body
can be caught between moving and stationary parts of the equipment [1]—. The pinch
points on the design are around the wheels of the A-UGV where fingers or other body
parts could potentially be pinched against the chassis.

5. Design Concepts Considered

The team considered a number of different design concepts to fulfill the problem. Each
of these concepts was conceived through an analysis of a few different options for key
components that the UGV would need to have. The UGV was identified to need, at
baseline: sensors for navigation, a microcontroller for memory stage and computation, a
chassis for the body, and motors for navigation and mapping.

Different types of sensors considered included: SHARP GP2Y0A21KOF IR sensors,
TFMini LIDAR sensor, and the HC-SRO04 ultrasonic sensor. The main three factors for
picking the sensor were measuring range, ease of use and price of the senor.

The SHARP sensor had a measuring range of 4 to 80cm this was decided that this
range was feasible but more range would be more practical. The output of the SHARP
is an analog voltage that is based on the angle of the reflected light that the sensor
emits. This would allow for the 7 to 9 sensor that would be needed to easily be
connected to a single microcontroller. The price of the sensor was $14.95 for a total of
around $104.65-$134.55 depending on the amount of sensors that was settled on. This
left the total budget spent to under $400, with a contingency budget of approximately
$100.

The TFMini sensor measuring range was .3 to 12m which had a greatly improved range
over the SHARP, but the measured range of under .3m was not accurate- an important
feature for the UGV. The TFMini uses UART to communicate data, but with 7 or 9
sensors, the team would have to purchase a UART to 12C to allow all the sensors to
communicate with the microcontroller. The cost of TFMini was $44.75 which makes it
the most expensive out of the 3 sensor. The total cost would be $320.25 which would
not leave enough budget for the rest of the project.

The team ended up choosing the HC-SRO04 sensor (shown in Section | of the Appendix
B), due to the fact that the range was midrange, at 4cm to 4m. The sensor has a digital
output but also needs digital input meaning the microcontroller will need at least 14 1/O
pins. The price was $3.95, but due to its availability from past projects using the same
sensors, the sensors are already available at no cost to the budget. Because these

sensors were available immediately, the team was also given the most exposure to
interfacing with these sensors.

Several types of microcontrollers were considered: the Arduino UNO, Raspberry Pi 3/4
and MSP430 Launchpad. I/0 pins and functionality were the two key factors the team
analyzed when choosing between design concepts for this part.

The Arduino UNO has 14 digital and 6 analog I/O pins, which are just under the
minimum amount of pins for either sensor. This meant that an I/O expander would have
to be purchased. The Arduino is able to efficiently run a script multiple times, but the
project would need to be able to run multiple scripts simultaneously. The Arduino also
has many shields to increase the functionality of the microcontroller. The microcontroller
was already available from past projects and would not need to come out of the budget.

Raspberry Pi has 24 I/O pins- more than enough for the minimum amount of pins
needed. The Raspberry Pi has the ability to run multiple scripts because of its capability
of having its own operating software. This added functionality, as it can allow programs
to be run and even create or edit scripts, all on one Raspberry Pi. This controller was
also available from past projects. Based on the factors from above, this was the
microcontroller decided on to be the optimum choice for meeting the project’s needs.

MSP430 Launchpad has 16 digital and 8 analog 1/O pins that meet the minimum
requirement but if more sensors had to be added then an expander would have to be
purchased. MSP has low power draw but can only run one script like the Arduino.
Making it lose functionality the project needs. This microcontroller would also add no
cost to the budget as there were some from past projects—.

6. Design Proposal

Shown below, in Figure 1, was the hardware block diagram of the UGV. The power fed
into voltage regulators that step the power source down to the voltages required by
each of the four motors, the seven ultrasonic sensors, and the Raspberry Pi. The
Raspberry Pi then communicated to a laptop to relay important mapping feedback.

Navigation and Mapping
/o

-Voltage Regulator-
| \‘

-Voltage Regulator- USE/\Wireless COM

Laptop

' '
Sensor Sensor
Sensor Sensor
Sensor Sensor

Mavigation and Mapping
Data stream

-\Voltage Regulator-

Ultrasonic
Sensor

Figure 1: Proposed Project Block Diagram

The final design concept, shown below in Figure 2, originally included four DC stepper
motors that drive up to four wheels simultaneously. The wheel diameter was determined
to be greater than 5 inches to allow space for the DC stepper motors underneath the
chassis. These motors were affixed to a 2-tier polypropylene pegboard chassis using
motors mounts that were screwed into the chassis. The chassis dimensions were
determined to be 22 inches by 18 inches and & inch thick for each sheet. The wheels
were mounted to the shafts of each motor and secured with set screws. Ultrasonic
sensors were utilized for both navigation and mapping of the vehicle, with the help of
the HC-SRO04 sensor. The vehicle included seven of these ultrasonic sensors with the
team allowing for the potential use of more or less, dependent on future testing results.
The Raspberry Pi was determined to be the best fit for the microcontroller and was used
to implement autonomous navigation and mapping. With 24 input/output pins, it was
satisfactory for controlling all the ultrasonic sensors as well as the motor drivers and the
stepper motors. The Raspberry Pi used approximately 5 Watts (W) of power under load
which was sufficient for extended battery life, while the DC stepper motors were the
source of main power consumption. To account for the total high power consumption of
this robot, the team recommended powering the four motors for 60 minutes, with the
help of two batteries, to meet design requirements. Unit tests for each of the sensors
individually, as well as running simultaneously, were also recommended before testing
the entire robot together after the final assembly.

Figure 2: Design Proposal Build

7. System Schematics and Diagrams
For detail-level schematics of system parts and assemblies, please refer to Section Il of
Appendix B. Figure B3 shows the circuit for the motor drivers that uses the connections
from figures B1(motor driver) and B2(motor). The circuit had 5 connections to each
driver and one to the Raspberry Pi that ground the whole circuit. The whole circuit was
grounded, as each of the 5 connections (EN, M1, M2, M3 and GND ports) all need to be
zero to enable the FETSs to drive motors and have full step resolution. The rest of the
connections for the motor driver were A+, A-, B+, and B- which connect to the motor by
red, blue, green, and black wires respectively.

The wiring diagram for each of the ultrasonic sensors (Figure B4) is shown in Figure B5.
The top half rail of the circuit had an output from the Raspberry Pi from Vcc. This rail
provided power to all the sensors. The next rail had an output from the Raspberry Pi
that connected to the trigger pin, so all the sensors were triggered at once. The
connections below the trigger rail were from each Echo pin on the sensors. This sent a
signal to the Raspberry Pi after going through a voltage divider of 1k and 2k resistors.
The last rail had an output from Raspberry Pi from GND to ground all the sensors and
for the voltage divider. The overall UGV schematic can be found in Figure A6.

8. Software and Algorithms
The team developed a pseudocode, shown below, before beginning the processing of
programming the mapping portion of the project. After writing this pseudocode, the team
went through multiple kinds of mapping algorithms before finishing the final prototype

with the A* algorithm. More information on the theory of each of these algorithms may
be found in Section IIl of Appendix B.

Pseudocode of Entire Process:

while Start is NOT Goal,
LOOP START:
1) Detecting Obstacle surrounding
2) Update map
3) Using A* or D* algorithm to search optimal path
4) Moving to next node along the optimal path
5) Mark current location as Start

LOOP END

y, 2) () (4 \ 3 7) (8

|) L LN\

(5) (6 7 (8) [3 6)) a2

74 Ny N N

(9 @ w2 @6 10 11
Figure 3: Breadth-First Search Figure 4: Depth-First Search

Shown in Figures 3 and 4, above, are two kinds of search algorithms: breadth-first
search algorithm (BFS), and depth-first search algorithm (DFS). An algorithm called
“Flood-Fill Algorithm” uses the concept of BFS or DFS (shown below in Figure 5). It
starts searching from the starting point, first traversing the neighboring points around
the starting point, and then traversing the neighboring points of the point that has been
traversed, and gradually spreading out until the endpoint is found. It then uses
backpropagation to following the cost decreasing, from the endpoint to the starting
point, to find the optimal path.

One of the faults of this program is that it blindly searches for all possibilities, as
opposed to considering the cost of each choice. Therefore, it has low efficiency.

10 e—0 1 17 12 13

END

10 1 :—I"
11 - |sr ‘

Figure 5: Flood-Filled Algorithm

In 1959, Edsger W. Dijkstra published his Shortest Path First algorithm, also known as
Dijkstra’s algorithm. Unlike the aforementioned strategy, Dijksra’s algorithm considers
the cost from the current node to the next node and the total cost in history. After
comparing the cost of all possible choices, it then generates an optimal path through
backpropagation. An example of Dijkstra’s algorithm is shown below in Figure 6.

'\\\\\\\\\\
;\\\\\\\1
= ,_.’/,/‘j

=N \
: : 227 /// Vi
Figure 6: Dijkstra’s Algorithm, con3|der|ng the motion cost in mountain terrain

The goal of this algorithm was to find out the optimal policy by minimizing the total cost,
and is based on the concept of dynamic programming. Since all the other path planning
algorithms are based on Dijkstra’s algorithm, additional information on how it works has
been included in Section Il of Appendix B.

oo
2‘ y':% (9
“ Oi gg-b
a8 o s
pif A
a8 g0
r ‘:4

2
- 3
4
i %
A .
: £e
) 43
i
3 o8
i
1
& *
'S
: 28
2 3
STARTY oD

'0 1234567 19ANE3A3008 0T R PLDTDEDD D DIND DANER KANNSS RS

Figure 7: A* Algorithm, cost 56.14

Finally, the team worked toward the final mapping algorithm that was used for this
prototype. In comparison to the previous two algorithms, the A* algorithm is faster than
Dijkstra’s Algorithm and maintains its optimality by having the same solution cost (the
total length of path). Based on the theory discussed in the Mapping Algorithm Theory
section of Appendix B, the most advantageous balance between velocity and
optimalityeptimibility is the A* algorithm itself. Figure 10, above, depicts an example of
the A* algorithm.

Undetected

ula | =

| J‘HEN | BN
HEENENEEEEEEEEEEN

Figure 8: Dynamic A*

To solve the problem defined in the beginning of this project, the algorithm needed to
have the ability to update map information in real time. This involved both the detection
strategy, as well as the ability to continuously generate the optimal path to the exit,
given information updates over time. This method is shown above, in Figure 11, and is
the mapping algorithm the final prototype was programmed with.

9. Testing and Analysis Planning
In order to test the UGV along with each milestone, the team came up with a series of
test plans for the overall robot as well as individual components and subsystems. The
testing and analysis plans were as follows:

w

HwnE

Pre-Build Testing and Preparation:
Test one ultrasonic sensor with the Raspberry Pi
Test all the ultrasonic sensors with the Raspberry Pi; gain familiarity for
simultaneous data I/O
a. Set the reference value of each of the sensors to calibrate
b. Determine rotation rate correlation with distance
Test the motors with the Raspberry Pi
Test the sensors with the preliminary mapping algorithm

Test Plan for Navigation Trial Run:

Test a distance for each one step of robot navigation

Test a number of steps that the robot can rotate exactly 90 degrees

Test a number of steps that the robot can rotate exactly 180 degrees

Test each stepper can run correctly and all steppers can run
simultaneously during multi-thread programming

Leave the robot running for 60 minutes to ensure a sustainable battery life
that meets the requirements

Test Plan for Mapping Trial Run:

10.Implement and test the A* algorithm
a. Test that the robot is able to communicate to the laptop and pass

b.

information back to the user on each of the distances and “nodes”
The obstacles, previous location, the current location information stored
inside Raspberry Pi for converting and updating data.

11.Test coordinate transformation (3D to 2D) by multiplying matrix
12.Test current attitude of the robot by doing dot product with minor bias
13.Test ultrasonic decision making (Priority and Pre-setting)

14.Test accuracy of an updated map with verifying the current existence of
obstacles

15. Test real-time decision making and mapping from D* Algorithm. Using real-time
detecting and updating map with ultrasonic sensors

10.Data and Testing Analysis

Ultrasonic Sensors Fest{Test (individual test):

1. Measured out various set distances measured in cm testing each sensor
to find an acceptable error range from the set distances to be 5-15cm.

2. Measured distance apart from sensors by incrementing sensors close until
their measurements started to interfere with each other to 10cm or
greater.

3. By simply applying a sliding filter to avoid ultrasonic sensors detect
something as an obstacle accidentally.

Ultrasonic Sensors and Meters{Motors (Software):
1. Unit test for each part; stepper motors moving adjustment for forward
movement of 8 directions and rotating movement of 8 directions—.
2. Adjust for alignment before hallway stand to assign reference and fixed
data values.
3. Object-Oriented Programming approach with real-time feedback

3=
11.Final Changes and Finished Design

After initial product shipping, combined with the evaluation of the results from the testing
detailed above, the team discovered multiple issues that had to be changed from the
initial design concept for completion of a working final product. The first issue was
availability of appropriately sized wheels. Because the robot needed wheels >5 inches
in diameter to allow for the large stepper motors, specifically sized wheels and hub
mounts were needed. The team was unable to find a pair of which neither was sold out
and would arrive before the end of the project term date. To mitigate this concern, the
team was able to imitate a similar design to the originally proposed wheel, and 3D
printed individual wheels. This mitigation saved both time and money for the team.

The second issue was the space and cable management for each of the three batteries,
along with the four motor drivers, soldered boards, and Raspberry Pi. To alleviate this
problem, the team added spacers to increase the space between the two levels of
polypropylene chassis, allowing for two batteries to sit in the middle layer of the robot.
Large holes were drilled down through the top layer of the robot in strategic locations,
which allowed for cables to be contained through the robot instead of hanging outside

10

the bounds of the UGV. Wires that led to the same device were labeled and soldered or
taped together to prevent accidental shorts and disconnections while the robot was
moving.

Because the robot initially utilized four stepper motors, the combined weight of the
motors proved to be difficult to manage. During the testing runs, the loaded robot
exhibited little success when trying to navigate turns and obstacles. After discussion,
the team decided to replace the initial four-wheel-drive system with a two-wheel-drive
system, switching the front two DC stepper motors out for mounted castor wheels. The
castor wheel mounts were 3D-printed to the appropriate height of the robot and then
drilled into the chassis.

The team encountered several issues with the initial design concept throughout the
build and testing phases of this project. However, there were also aspects of the final
product that were carried through with success from the initial design concept. One of
these was the use of the polypropylene chassis. The chassis was sturdy enough to
provide adequate support for the robot, and the two-layer structure allowed an
additional room to store parts. The hole pattern of the polypropylene board also
provided some mitigation for cable management. The ultrasonic sensors that were used
proved to be accurate for the purposes of this problem and were user-friendly to work
with. The DC stepper motors were another good choice because of their power,
regardless of the terrain of the landscape. Lastly, the mitigation of using 3D-printed
wheels saved both times and kept the design as it was originally intended. The team
then used rubber tape to add cushion and friction for the robot to navigate easily over
smooth surfaces. Figure 3 and Figure 4, shown below, illustrate the final logic block
diagram as well as the final build of the robot.

11

Navigation and Mapping

-Voltage Regulator- /0

1

-Voltage Regulator- USB/Wireless COM

Power

Raspberry Pi 4

Laptop

Ultrasonic -
Sensor Sensor
Ultrasonic
-Voltage Regulator- Sensor Sensor Navigation and Mapping

Ultrasonic | Ultrasonic Data stream
Sensor Sensor

Ultrasonic
Sensor

Figure 9: Final Design Block Diagram

f]
']
: Logic Block of Algorithm H
I-! - - - - - - - - 4'
Update
A* _ Values
. Dvnamic A* Mapping | Raspberry Pi 4 Motor
DX Algorithm 2 (MCU) Drivers
. Cost
A A 3
. Step Motors
Mapping
Y l
Obstacles Ultrasonic Sensor Update New M M
(obstacle detect) | pdate New Map ove

Random Obstacle

Figure 10: Final Algorithm Communication Block Diagram

Figure 11: Final Robot Build

10.Schedule and Work Breakdown Structure
Each of the tasks that were needed to complete and reach milestones for this project
was assigned to specific team members. These team members were responsible for
taking the lead on these tasks, with the option of additional assistance from team
members to push the deliverable. The task list along with its assigned work breakdown
structure can be found in Appendix A. The team also developed a Gantt chart, which
was used to track each of these tasks by the start and end date, along with the
approximate amount of time each item would take to complete. This Gantt chart was
updated through the process to reflect the team’s current progress and adjust for project
components that needed additional time. This chart can be found in Appendix A,
following the Work Breakdown Structure.

11.Required Hardware, Equipment, and Facilities
This project required at least one empty room for testing. This testing room was then
escalated to a room with obstacles that the robot had to avoid, and multiple exit paths.
The team used empty classrooms and hallways in Dreese and Caldwell to test and
troubleshoot the UGV. The team used a Raspberry Pi for feedback control and real-time
decision making in mapping. The UGV required power management equipment to keep

13

a consistent power source to operate all the components for the required specification
of 60 minutes. A laptop was used to communicate with the Raspberry Pi.

12.Budget

A number of key components needed to build this product were sourced from the
supplies of previous capstone groups. This included the two DC stepper motors, seven
to nine ultrasonic sensors, and a Raspberry Pi 4. Key items that the group purchased
include the polypropylene board to construct a two-tier chassis, a battery pack for the
Raspberry Pi, two gyroscopes, four motor drivers, four-set screw hubs, and
miscellaneous wires and screws. Shown in Table 1, below, from the provided $500
budget, the team used $358.73, leaving $141.27 to spare. However, the team removed
and replaced some of the design proposal items with alternatives to mitigate the
challenges discovered in the testing phase. Additional parts were 3D-printed and used
to hold the ultrasonic sensors in place. The group decided to move from the original
four-wheel drive to two-wheel drive, eliminating weight concerns. In the final Bill of
Materials, located in Section Il of Appendix B, the amount of materials used to construct
the final robot totaled to $221.74, or approximately $137 under the total budget spent.

Table 1: Budget Expenditure

Key Item Amount From Budget
Stepper Motor (2) $69 .64
Stepper Motor Mounting Bracket (4) $39.56
Polypropylene Chassis (2) $41.83
Gyroscope (2) $50.76
Motor Drivers (4) $79.80
Power Bank (1) $29.99
Set Screw Hub (4) $19.96
Misc. (screws, spacers, etc.) $27 19
Total Budget Spent $358.73

14

13.Conclusion and Recommendations

With the expanding market of autonomous vehicles and the sensationalism of drones,
this product serves to combine some of the useful features of both. The development of
an Unmanned Ground Vehicle (UGV) can be applicable to a variety of situations,
whether it be through the defense sector, or a search and rescue mission. Where it
might be unsafe for humans to venture, the design of this vehicle allows it to safely
navigate areas with no prior knowledge of the scene it may be entering. Furthermore,
this vehicle is capable of mapping out a room and determining the closest point of exit
for personnel that may then head into the situation as a backup.

Since it is a primary prototype, there are numerous hardware enhancements worth
pursuing for future work. Among these is optimizing the pairing of the motors and
chassis material to be sturdy, but lightweight. While ultrasonic sensors were a useful
first method of detection in the initial prototype, future groups should look toward using
more robust methods of sensing, such as LIDAR. Cable management also played a
huge role in the build of this prototype. Optimizing wire and cable management into the
chassis design itself would prove more efficient for ease of use as well as assembling
and disassembling. Overall, the budget played a limiting factor in the design concept
and part choices the team decided on. Additional testing also showed that some parts
were purchased that were unnecessary. With greater foresight, future groups could use
these design and test challenges to optimize the budget available.

The software provided the real functionality of the robot without being limited by as
many external factors, such as the budget. The software algorithm used could undergo
further refinement to improve the efficacy and precision of the robot. Given improved
consideration of possible ground turbulence or possible elevated surfaces built into the
hardware, future software could work together with the hardware to optimize such
features.

While the team made efforts to mitigate the in-aesthetic appearance caused by the lack
of professional cable management, future work could be done to improve on the
outward development of the robot. For example, a transparent dome-like fixture could
be placed over the top of the robot, customized with the placement of the ultrasonic
sensors. This would contain the cables while providing some protection from
unexpected water or physical damage. In addition, the transparency feature could allow
for visual feedback in the form of a color LED.

Overall, the team used its resources to develop the best prototype possible given the
constraints at the time. While the robot was able to perform effectively, there are
definitive measures that can be taken in the future to ensure a smoother design process
that can allow for further optimizations and improvements.

15

Bibliography

1.

Gray, Bobby J. “NFPA 70E - Proposed 2018 Edition.” Nfpa.org, 2017,
www.nfpa.org/assets/files/AboutTheCodes/70E/Proposed_TIA 1265 NFPA 70E
pdf.

. “Occupational Safety and Health Administration.” 1910.211 - Definitions. |

Occupational Safety and Health Administration, www.osha.gov/laws-
regs/regulations/standardnumber/1910/1910.211.

“Polypropylene.” The Association of Plastic Recyclers, 2018,
plasticsrecycling.org/pp.

Yoon, Soocheol, and Roger Bostelman. “Analysis of Automatic through
Autonomous - Unmanned Ground Vehicles (A-UGVs) Towards Performance
Standards.” IEEE Xplore, 2019, ieeexplore.ieee.org/document/8790421.

“A * Algorithm for Path Planning”, Yunxi Community, Alibaba Cloud, 9 Jan. 2019,
https://yq.aliyun.com/articles/685477?utm_content=g_1000036267.

Koenig, Sven, and Maxim Likhachev. “D* Lite.” Eighteenth National Conference
on Atrtificial Intelligence, 1 Aug. 2002, pp. 476—-483.

16

Appendix A

17

Document Change Notice

Date Change
10/8/2019 Initial Release
12/3/2019 Final Release

(+):

Team picture

Ultrasonic sensor, motor driver and UGV schematics
Updated design, budget, and schedule

Testing process and results

Design changes, Risks and Mitigations

Logic for Mapping Algorithm

Final BOM

Python Code

18

Team Charter

Team name:
Go Go Power Rangers

The team mission is to successfully develop and design a device that provides a unique
solution to a problem while keeping good engineering practice ethics. To make sure we
meet all the requirements necessary for this project.

Team decision-making guidelines:

The initial line of decision will be made based on a majority vote with rating. In
the event that there is a tie, each member of the team “scores” how strongly they vote
for a particular design and the design with the higher score wins.

Meeting guidelines:

Each meeting will start with a predefined agenda. Each member of the group will
contribute any deliverable updates since the last meeting and these objectives will be
compared against the Gaant chart to measure progress. Members will discuss progress
objectives for the upcoming week. After each meeting, a meeting minutes note will be
sent out to recap over any discussions or resolutions. If a member wants to discuss a
specific topic at a deeper level, the member will give a one-day notice to the other
members of the group to ensure good time management.

Team roles:

Emily Kong: Analog power electronics
Devin Hensley: Digital, microcontroller
Yuan You: Control, MCU, DSP

Ryan Hackney: Microprocessor

Matt Stoner: Power and Control

Yoon Jae Lee: Control, Robotics, Avionics

Conflict resolution:

If any member(s) of the team have any conflicts with other member(s) of the
team, a calm discussion will take place regarding team expectations and ways to solve
the issue. Should the problem progress past these discussions to the point of hurting
project objectives and going unresolved, the professor will be involved

Team member commitment:

As a member of team 4, | pledge to actively participate with the team in working
toward completing all project goals and objectives by showing up to pre-scheduled
meetings and completing all deliverables to facilitate product progress.

Signatures:
Emily Kong
Devin Hensley
Yuan You
Ryan Hackney
Matt Stoner

19

Work Breakdown Chart

TASK

Milestones

Robot Assembly Completed
Navigation Trial Run

Final Navigation Run
Mapping Trial Run
Preliminary Demonstration
Finish Product

Final Project Demonstration

Physical Build

Generate possible chassis designs and layout

Create BOM and Final Design Concept

Robot Assembly + Reconfiguration

Navigation + Mapping Code

Choose Programming Language

Research Mavigation Processes

Interface with 7 Sensors Simultaneously

Create Preliminary Mavigation Protocol

Finish Mavigation Protocol and Program Robot

Optimize Mavigation Protocol (if necessary)

Program Algorithm to Find Optimal Path

ASSIGNED
TO

All Team

Matt/Emily

Matt/Emily

Matt/Emily

Devin/Ryan (Lead)
Matt/Emily

Devin/Ryan (Lead)
Matt/Emily

Devin/Ryan (Lead)
Matt/Emily

Devin/Ryan (Lead)
Matt/Emily

Devin/Ryan (Lead)
Matt/Emily

Devin/Ryan (Lead)
Matt/Emily

Yuan/Yoon (Lead)
Matt/Emily

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

PROGRESS START

91719

89M7M9

9/25/19

10/8/19

1011119

10722119

91719

919119

9/20/19

9/20/19

1010119

10/10/19

1011119

101719

1019113

10/14/19

10/29/19

1019419

10/18/19

1042119

END

9/25/19

10/8/19

9/26/19
10/15/19
10/18/19

1111919

9/19/M19
10/1/19
10/10/19
10/10/19
10/17/19
10/17/19
10/18/19
11/5/19
10/29/19
10/19/19
11/5/19
10/19/19
121119

10/27/19

20

Yuan/Yoon (Lead) Planned 101818 10/22119
Register Object/\Wall Detection and Store in Memory Matt/Emily
Actual |: 10/14/18 11/5/19
Yuan/Yoon (Lead) Planned 1002219 10/27/19
onvert Object Detectionto 2D Blueprint Drawing (machine readabli Matt/Emily
Actual |: 1001819 111019
C t Machine-Readable Blueprint Drawing to User-Readable Yuan/Yoon (Lead) Planned 10/28/18 11/5/19
Blueprint Drawi Matt/Emily
1042819 1116/19
Yuan/Yoon (Lead) Planned 11/6M19 120719
Optimize Mapping Protocol Matt/Emily
11/6/19

21

Gantt Chart

Project Planning Gantt Chart

Tearn 4
Tearn: Rwan Hackney, Devin Hensley, Emily
Kong, Yoon Jae Lee, Matt Stoner, Yuan Yau

ASSIGHED
0

Project Start:

Dizplay week.:

PROGRESS

SIMPLE GANTT CHART by ¥ertezd4Z com

hetps:ttue vertexd 2 comiExcelT emplates! simple-gantt-chart html

START

Tue, 3M0/20M3

Sepd, 2019 Sep i 2013

Sep 23, 2013

4 10 11 12 13 14 15 16 17 1% 19 20 1 2z 23 2d 25 Zk 27 2% 2930 1 E X 4 5 &[T % 4 10

Sep 30,2013 Oct 7, 2013 Ot 14, 2018

M 1z 13 14 18

Ot 21, 2019 Ot 28, 2013 Mow 4, 2013

1 Ez 2 id G EE ET(EE 9 B0 R 1 2 3| 4 B 6 7

Mow 11, 2013 Mow 13, 2013 Mow 25, 2013 Dec 2, 2013

£ 4 0 1 12 12 1 15 1 17| 18 19 E0 1 2z 2 2d 25 26 27 2% z4 2 1z | x|d4 B & T

Diec 8, 2013 Dec 18, 2013 Dec 23, 2013 | Dec 30, 2013

617 1 18 @0 £ 08 W M 1E 1F 14 15|16 17 1% 19 20 2 FEE T T EE N 1 E E 4 5

Fiobot Assembly Completed
Mavigation Trial Run

Final Mavigation Run
M1apping Trial Fun
Preliminary Demonstration
Finish Product

Final Project Demonstration

Generate possible chassis designs and layout

Create BOM and Final Design Concept

Robat Azsembly + Reconfiguration

MNavigation « Mapping Code

Choose Programming Language

Fiezearch Mavigation Proceszes

Interface with 7 Sensors Simultaneously

Create Preliminary Mavigation Protocol

Finish Mavigation Pratocal and Program Robot

Optimize Mavigation Protocol [if neces=ary)

Program Algorithm ko Find Optimal Path

Register Objecti all Detection and Stare in Memory

wert Object Detectionto 20 Blueprint Orawing [machine read:

Convert Machine-Feadable Blueprink Orawing to User-
Fieadable Blueprint Orawing

Olptimize Mapping Protocol

All Team

PatfEmily

MatfEmily

PatfEmily

DievinfFyan (Lead)
PatfEmily

DevinfFyan [Lead)
PAatfEmily

DievinfFyan (Lead)
PatfEmily

DevinfFyan [Lead)
PAatfEmily

DievinfFyan (Lead)
PatfEmily

DevinfFyan [Lead)
PAatfEmily

fuandoon [Lead)
Pt Emily

“fuanf'oon [Lead)
PAatfEmily

fuandoon [Lead)
Pt Emily

“fuanf'oon [Lead)
PAatfEmily

fuandoon [Lead)
Pt Emily

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

Flanned

Actual

L

T

92513

10d3M3

101113

0zzMa

STa

51193

af20i13

af20i14

10M0H3

10M0H3

10113

0M7H3

10M313

10M413

0zana

0013413

0012413

104213

10MaH13

10M413

0zzMa

10MaH3

1072519

1072519

HENS

en3

S126M3

04213

912613

101513

101813

11313

aMang

10113

101013

101013

101713

101713

1012413

153

1042313

101313

1153

101313

12013

10d27H3

10d22M3

WE1S

1zTHa

103

1513

116

124713

22

Appendix B

23

Section I: Physical Components

Bill of Materials

Part Description Quantity Price Location Bought From
Polypropylene Pegboard (9"x11") 2 $41.83|Grainger
Stepper Motor NEMA 23 2 $38.69|Mouser
Stepper Motor Mounts 2 $19.78|Newegg
Motor Drivers 2 $39.90|SparkFun
1/2" Spacers 8 $1.79|Grainger
Ultrasonic Sensors 7 $0.00|Found in Lab
3D Printed Side Sensor Mount 4 $0.00(3D printed
3D Printed Front Sensor Mount 2 $0.00(3D printed
3D Printed Underneath Sensor
Mount 1 $0.00(3D printed
Portable Bank, 5V 1 $29.99|Micro Center
Power Bank, 12V 1 $0.00|Found in Lab
3D Printed 4.5" Wheels 2 $0.00(3D printed
1/4" Wheel-to-Shaft Mounting Hub 2 $9.98|SparkFun
1/4"-28 Bolts, 2" 4 $2.20|ACE Hardware
#6-32 Bolts, 1/2" 16 $3.20|ACE Hardware
#8-32 Nuts and 3/4" Bolts 32 $5.98|Lowe's
#8 Washers 16 $4.98|Lowe's
Raspberry Pi 1 $0.00|Found in Lab
Prototype Board 2 $0.00(Found in Lab
Male Break Away Pins 2 $1.50|SparkFun
Small Heatsink 4 $7.80|SparkFun
#4-40 Bolts, 1/2" 100 $1.95|Grainger
#4-40 Nuts 100 $2.04|Grainger
Omni Wheel Mounts 2 $0.00|3D Printed
Roller Ball Bearing Casters 2 $10.13|Amazon

Total $221.74

24

3D Printed Part Drawings

2 'f 1
2.00
N (e} Ow_| #.125
1 |
!— 2.25 -J|
2.75
.63 e 675+
O
1.375
Q
Mot Stoner 11/18/2018
TRECFED A
[T
TITLE
MFG
APPROVED FRONT/BACK SENSOR MOUNT
e IR TET
» | |
SUALE
1: 1| ISHEEI'] oFl
2 4.\. 1

25

]

B
2.25
= 675 =
@.63
(&) i
O &
1.375
125
— e s, g, —L
T
g 11
ﬁ%ﬂy [18/2019 A
EE
AFFROVED IDE SENSOR MOUNT
2rid TV
| [I
1. ll [snF_EI lorl
2 qh 1

26

o 1.75
L 1 1
o (o]
2.00
I 275 :
Er]
HE F 11/18/2019
e
AFPRLVED NDERMNEATH SENSOR MOUNT
SE BEW
A I I
1. lI [-.;nEET 1l oel
2

E T

J5

o . akiak kel Mk M, s e b,

U ——
S —leuue L

W
ﬁﬁg 12/2/2019

Figure B 1. Sparkfun Big Easy Driver

28

Figure B 2: Wantai Stepper Motor

GND on
Raspberry Pi

«—(O—7F

EN on Motor
Driver <

M1 on Motor
Driver <

M2 on Motor
Driver

M3 on Motor
Driver

BEIF NG

X K

(_

GND oh Motor GND o
Driver

D (

> O O O

Driver

S

otor

EN on Motor
— Driver

M1 on Motor
— Driver

Ly M2 on Motor

Driver

M3 on Motor
Driver

Figure B 3: Circuit for motor drivers

29

Figure B 4: HR SR04 Ultrasonic sensor

VDD for the seven sensors

o BN DR A

l

L

Fi
Trigger on Trigger for the seven sensors
a
Raspberry™ O
Fi
Echo from the seven sensors
= = = = = = =
e e e e e e o
Echo for Rasphberry Pi
after voltage divider from - - - €3 oo oo e e e Y e
Seven sensors
() %) () %) [%) [
~ ko ~ b ~ b ~

prevun N U SN

Pi

GMD for the seven sensors

Figure B 5: Circuit for sensors

l

L

J;

30

Motor 0 Motor 1
A0 A1BOB1 A0 A1BOB1
A0 A1 B0 B1 A0 A1BOB1
— —EN EN
— M1 M+ M+ M1
o—— M2 Motor Driver 0 Motor Driver 1 M2 —_4:
— M3 Mo
+——GND GND
57 STEP DIR STEP DIR
17 27 6 13
vCC VCC
i Battery 1
Raspberry Pi GND__L_GND C Y

242587201612 21

vCcC

GND

Battery 0

01234 56
Voltage Divider

0123456

*— TRIG
——ECHO

+— TRIG
ECHO

*— TRIG
ECHO

+— TRIG
ECHO

ECHO

*— TRIG
ECHO

— TRIG
ECHO

VCC ——
GND

=
VCC
GND

=

VvCC—¢
GND

-

VCC ——¢
GND

—

VCC —¢
GND

Yy
vCC —¢
GND

=
VCC
GND

=

Sensor 6

Sensor 5

Sensor 4

Sensor 3

Sensor 2

Sensor 1

Sensor 0

Figure B 6: UGV Schematic

31

Section Il: Code

from numpy Import *

def H(a,b) :
D=1

(af0,0]-b[0,0])**2+abs (al0,1]-b[0,1])**2)

a=mat ([[3,4,5]1)
print ("Unit Test - H cost: ", H(a,b))

from numpy import *

from isSamePosition import isSamePosition

def isObstacle (m, obstacle) :
for index in range (0, len (obstacle[:,0])):
1f isSamePosition (obstacle[index, :],m[0:2]) :
flag=True
return flag
flag=False

return flag

e=mat ([[6,6]])
print ("Unit Test - isObstacle: ", isObstacle (e,obstacle))

from numpy

def isSamePosition (a,b) :
result=False
if al[0,0]==b[0,0] and a[0,1]1==b[0,1]:
result=True

return result

c=mat ([[1,2]1])
d=mat ([[1,2]])

print ("Unit Test - isSamePosition: ", isSamePosition(c,d))

import RPi.GPIO as gpio

import time

class led flash:

def init (self, green led pin, blue led pin):

self.green led pin=green led pin

self.blue led pin=blue led pin
gpio.setmode (gpio.BCM)
gpio.setup (self.green led pin, gpio.OUT)

gpio.setup(self.blue led pin, gpio.OUT)

gpio.output (self.green led pin,False)
gpio.output (self.blue led pin,False)

def toggle(self, led pin, interval):

while True:

if led pin=="GREEN":

gpio.output (self.green led pin, True)

time.sleep (interval)
gpio.output (self.green led pin,False)
time.sleep (interval)

elif led pin=="BLUE":
gpio.output (self.blue led pin, True)
time.sleep (interval)
gpio.output (self.blue led pin, False)

time.sleep (interval)

== ' main ':
print ("LED MODULE SELF TESTING")
gpio.cleanup ()
led=led flash(17,27)
led.toggle ("GREEN", 1)

from numpy import *

def MotionModel () :
D=1

next move=mat ([

return next move

== ' main_ ':

print ("Unit Test - MotionModel: ", print (MotionModel ()))

from numpy Import *
import time

rom isObstacle import isObstacle

def Ultrasonic (path map) :
left flag=0
right flag=0
up flag=0
down flag=0

left position=mat ([[path map.current position[0,0]-

1,path map.current position([0,1]1]])

right position=mat ([[path map.current position[0,0]+1,path map.current pos

ition[0,1]111)

up position=mat ([[path map.current position[0,0],path map.current position
[0,11+111)

down position=mat ([[path map.current position[0,0],path map.current positi
on[0,1]-1]11)
i1f isObstacle (left position,path map.obstacle) :
left flag=1
isObstacle (right position,path map.obstacle) :
right flag=1
isObstacle (up _position,path map.obstacle) :
up flag=1
isObstacle (down position,path map.obstacle) :

down flag=1

return left flag, right flag, up flag, down flag

from numpy Impo
def GetBoundary (map size) :
boundary=mat ([[0,0]])
for il in range(l,map size+2):
boundary=vstack ((boundary, [0,1i1]))
for 12 in range (l,map size+2):
boundary=vstack ((boundary, [12,0]))
for i3 in range (l,map size+2):
boundary=vstack ((boundary, [map size+l,i3]))
for i4 in range (l,map size+l) :
boundary=vstack ((boundary, [i4,map size+l]))

return boundary

print ("Unit Test - GetBoundary: \n", GetBoundary(5))

from numpy Import *

from isSamePosition import isSamePosition

def FindList (m,open list,close 1ist):
1f len (open list):
for index in range (0, len(open list[:,0])):
1f isSamePosition (open list[index,:],m[0:2]):
flag=1
return flag
len(close list):
for index in range (0, len(close list[:,0])):
1f isSamePosition(close list[index,:],m[0:2]):
flag=2
return flag
flag=3
return flag
== ' main ':
M=mat ([[5,6,3,1,2]1])
OPEN LIST=mat([[1,2,6],

CLOSE_LIST=mat ([[3,4,6],

[6,6,61,
[7,6,6
[

4

print ("Unit Test - FindList: ", FindList (M,OPEN LIST,CLOSE LIST))

1 numpy import *
1 isSamePosition import isSamePosition
1 GetBoundary import GetBoundary

1 Ultrasonic import Ultrasonic

def random pick(some list, probabilities):
X = random.uniform (0, 1)
cumulative probability = 0.0
for item, item probability in zip (some list, probabilities):
cumulative probability += item probability
1f x < cumulative probability:
break

return item

GetObstacle (path map, mode) :
left detect flag=0

right detect flag=0

up detect flag=0

down detect flag=0

1f mode=='random':

new obstacle cordinate=mat (random.randint (1,path map.map size+l, =[path

_map.map size*path map.map size,2]))
new obstacle=new obstacle cordinate[0O:path map.num of obstacle, :]
removed list=[]
for index in range (0, len(new obstacle[:,0])):
isSamePosition (new obstacle[index, :],path map.start position) or
isSamePosition (new obstacle[index, :],path map.end position) :

removed list.append (index)

new obstacle=delete (new obstacle, removed list, =0)

elif mode=='"detect':
new obstacle=mat ([[0,0]1])

print ("Ultrasonic is detecting...")

left detect flag,right detect flag,up detect flag,down detect flag=Ultraso
nic(path map)

1f left detect flag:
temp obstacle=mat ([[path map.current position[0,0]-
1,path map.current position([0,1]1]])
new obstacle=vstack ((new obstacle,temp obstacle))

if right detect flag:

temp obstacle=mat ([[path map.current position[0,0]+1,path map.current posi
tion[0,111]11])
new obstacle=vstack ((new obstacle, temp obstacle))

if up detect flag:

temp obstacle=mat ([[path map.current position[0,0],path map.current positi
on[0,1]+111)
new obstacle=vstack ((new obstacle,temp obstacle))

1f down detect flag:

temp obstacle=mat ([[path map.current position[0,0],path map.current positi

on[0,1]1-1]1)

new obstacle=vstack ((new obstacle,temp obstacle))

new obstacle=delete (new obstacle, O,

return new obstacle

== ' main

from PATHPLANNING import pathplanning

map_ size=5

start position=mat ([[1,1]])

end position=mat ([[4,4]])

path map=pathplanning (start position,end position,map size)
path map.current position=path map.start position

[1,111)

path map.start position=mat ([
4,411)

path map.end position=mat (

4

14

(

[
path map.obstacle=mat ([1,

]

]

]

14

(1,21,

(2,11,

[0,111)
path map.num of obstacle=5

print ("Unit Test - GetObstacle: \n
GetObstacle (path map, ='detect'))

from numpy Import *
import time

from isSamePosition import isSamePosition

def GetPath(close 1list, start):
path=mat ([[0,0]])

index=0

while True:

path=vstack((path,close list[index,0:2]))

i1f isSamePosition (close list[index,0:2],start):

break

for i in range(0,len(close list[:,0])):

i1f isSamePosition (close 1list[i,0:2],close list[index,3:5]):
index=i

break

path=delete (path, 0,

return path

import RPi.GPIO as gpio

import time

class stepper:

def init (self, FRONT LEFT, FRONT RIGHT, BACK LEFT, BACK RIGHT,
msl pin, msZ pin, ms3 pin, enable pin, mode, step time=0.0045):
self.front left step pin = FRONT LEFT[O0]
self.front left dir pin = FRONT LEFT[1]
self.front right step pin = FRONT RIGHT[O]
self.front right dir pin = FRONT RIGHT [1]

.msl=msl pin
.ms2=ms2_pin
.ms3=ms3 pin
.enable=enable pin

.mode=mode

.setmode (gpio.BCM)

.setup (self.front left step pin, gpio.OUT)

.setup

(

.setup (self.front left dir pin, gpio.OUT)
(self.front right step pin, gpio.OUT)
(

.setup (self.front right dir pin, gpio.OUT)

.setup (self.msl, gpio.OUT)

.setup (self.ms2, gpio.OUT)

.setup (self.ms3, gpio.OUT)

(
(
(
(

.setup (self.enable, gpio.OUT)

.output (self.front left step pin, False)

.output (self.front left dir pin, False)

(
(
.output (self.front right step pin, False)
.output (self.front right dir pin, False)

.output (self.msl, False)

.output (self.ms2, False)

.output (self.ms3, False)

(
(
(
(

.output (self.enable, False)

.step time = step time
.steps per rev = 1600

.current position = 0

def move F(self, step count=200):
print ("FFFFFFFEFFFFFE")

gpio.output (self.front right dir pin, False)

gpio.output (self.front left dir pin, True)

for 1 in range (abs(step count)):

output (self.front left step pin, True)
output (self.front right step pin, True)

sleep (self.step time)

output (self.front left step pin, False)

output (self.front right step pin, False)

time.sleep(self.step time)

def move L(self, step count=130):

print ("LLLLLLLLLLLLLL")

gpio.output (self.front right dir pin, True)

gpio.output (self.front left dir pin, True)

range (abs (step count)) :
.output (self.front left step pin, True)
.output (self.front right step pin, True)

.sleep (self.step time)

output (self.front left step pin, False)
output (self.front right step pin, False)

time.sleep(self.step time)

def move R(self, step count=130):

print ("FRRRRRRRRRRRRR")

gpio.output (self.front right dir pin, False)

gpio.output (self.front left dir pin, False)

range (abs (step count)) :
output (self.front left step pin, True)
output (self.front right step pin, True)

sleep(self.step time)
output (self.front left step pin, False)
output (self.front right step pin, False)

time.sleep(self.step time)

def move U(self, step count=259):

print ("UUUUUUUUU")

gpio.output (self.front right dir pin, False)

gpio.output (self.front left dir pin, False)

range (abs (step count)) :
.output (self.front left step pin, True)
.output (self.front right step pin, True)

.sleep(self.step time)

.output (self.front left step pin, False)

.output (self.front right step pin, False)

.sleep(self.step time)

1

== main ':

print ("STEPPER MODULE SELF TESTING")

msl pin=14

ms2 pin=14

ms3 pin=14

enable pin=14

front left step pin=26
front left dir pin=19

back left step pin=6
back left dir pin=13

front right step pin=2
front right dir pin=3

back right step pin=17
back right dir pin=27

FRONT LEFT=[front left step pin, front left dir pin]
FRONT RIGHT=[front right step pin, front right dir pin]
BACK LEFT=[back left step pin, back left dir pin]

BAKC RIGHT=[back right step pin, back right dir pin]

stepper=stepper (FRONT LEFT, FRONT RIGHT,BACK LEFT,BAKC RIGHT,msl pin,ms2 pi

n,ms3 pin,enable pin,0)

stepper.move U ()
time.sleep (0.75)

stepper.moveiF()

from numpy Import *

from STEPPER import stepper

def Move (last direction vector,current position,next position) :

move direction=""

if current position[0,0]<next position[0,0] and

current position[0,1l]==next position[0,1]:
direction str="RIGHT"

direction vector=mat ([[1,0]])
trasnmit matrix=mat ([[0,0,0,1]
[(0,0,1,01,
[1,0,0,01,
[0,1,0,011)

elif current position[0,0]>next position[0,0] and

14

current position[0,1]==next position[0,1]:

direction str="LEFT"

direction vector=mat ([[-1,0]1)
trasnmit matrix=mat ([[0,0,1,0],
[0,0,0,11,
[0,1,0,0]
[1,0,0,0]

14

1)

elif current position[0,0]==next position[0,0] and

current position[0,1]<next position[0,1]:

direction str="UP"

direction vector=mat ([[0,1]])

trasnmit matrix=mat([[1,0,0,0],

[(0,1,0,01,
[0,0,1,01,
[0,0,0,111)
elif current position[0,0]==next position[0,0] and
current position[0,1l]>next position[0,1]:

direction str="DOWN"

direction vector=mat ([[0,-1]]

trasnmit matrix=mat ([[0,1,0,0

)
I
[(1,0,0,01,
[0,0,0,1]
[]

0,0,1,011)

cos theta=(last direction vector-
mat ([[0.02,0.01]]))* (direction vector+mat ([[0.01,0.02]])) .transpose ()
if cos theta == -1.0304 or cos theta == -0.9703999999999999:

move direction="U-turn"

transmit vector=mat ([[0,-1]])
Stepper.move U ()
Stepper.move F ()

elif cos theta == 1.0096 or cos theta == 0.9896:
move direction="Forward"
transmit vector=mat ([[0,1]])
Stepper.move F ()

elif cos theta == -0.0204 or cos theta == -0.0003999999999999976 or

cos _theta == 0.0196:

move direction="Rightward"
transmit vector=mat ([[1,0]])
Stepper.move R ()

Stepper.move F ()

elif cos theta == -0.00040000000000000105 or cos theta == 0.0396 or
cos theta == -0.0404:
move direction="Leftward"
transmit vector=mat ([[-1,0]])
Stepper.move L ()

Stepper.move F ()

last direction vector=direction vector
("MOVE "+move direction)
return current position, trasnmit matrix, last direction vector

1]

== " main ":
current grid=mat ([[12,12]])
next grid=mat ([[12,11]])
last dir=mat ([[1,0]1])

Move (last dir,current grid,next grid)

GPIO.setmode (GPIO.BCM)

class UltraSonic dev:

FLOOR BOOL = False

FRONT BOOL False

RIGHT1 BOOL = False
RIGHTZ BOOL = False
BACK BOOL = False

LEFT2 BOOL False
LEFT1 BOOL False

def init (self, TRIG, ultrasonic echo set):

self.TRIG=TRIG

self.ultrasonic echo set=ultrasonic echo set
self.distance=[99999, 99999]
GPIO.setup(self.TRIG,GPIO.OUT)

for echo pin in self.ultrasonic echo set:

GPIO.setup (echo pin,GPIO.IN)

detecting process (self, side set):
pulse start=[0,0]

pulse end=[0,0]

pulse duration=[0,0]

1i=0

for echo pin in side set:

GPIO.output (self.TRIG, False)
time.sleep (0.01)

.output (self.TRIG, True)

.sleep(0.00001)

.output (self.TRIG, False)

while GPIO.input (echo pin)==

pulse start[i] = time.time ()

while GPIO.input (echo pin)==1:

pulse end[i] = time.time ()

pulse duration[i] = pulse end[i] - pulse start[i]

self.distance[i] = pulse duration[i] * 17150

self.distance[i] = round(self.distancel[i], 2)

i=i+1

time.sleep (0.001)

detect (self, direction=None) :
1f direction=="left':
print ("Left Ultrasonic is detecting")

left ultrasonic set=self.ultrasonic echo set[4:5+1]

k=0

avg distance=[]

while k<10:
self.detecting process(left ultrasonic set)
avg distance.append(self.distance[0])
k=k+1

return sum(avg distance)/10.0

if direction=='right':
print ("Right Ultrasonic is detecting")

right ultrasonic set=self.ultrasonic echo set[2:3+1]

k=0

avg distance=[]

while k<10:
self.detecting process(right ultrasonic set)
avg distance.append(self.distance[0])
k=k+1

return sum(avg distance)/10.0

i1f direction=="'front':
print ("Front Ultrasonic is detecting")

front ultrasonic set=self.ultrasonic echo set[1l:1+1]

k=0

avg distance=[]

while k<10:
self.detecting process (front ultrasonic set)
avg distance.append(self.distance[0])
k=k+1
return sum(avg distance)/10.0
if direction=='back':
print ("Back Ultrasonic is detecting")

back ultrasonic set=self.ultrasonic echo set[6:6+1]

k=0

avg distance=[]

while k<10:
self.detecting process (back ultrasonic set)
avg distance.append(self.distance[0])
k=k+1

rn sum(avg _distance) /10.0

print ("Unit Test: Ultrasonic")

TRIG = 21

FLOOR 20

FRONT 23

RIGHT1 12

RIGHT?2 8

LEFT1 7

LEFT2 16

BACK = 24

ultrasonic_echo set=[FLOOR, FRONT, RIGHT1, RIGHT2, LEFT1, LEFT2, BACK]
ultrasonic=UltraSonic dev (TRIG,ultrasonic_echo set)
flag=ultrasonic.detect (='back')

print (flag)

from numpy Import *

1 H import H

1 isSamePosition import isSamePosition
1 MotionModel import MotionModel

1 FindList import FindList

1 GetBoundary import GetBoundary

1 GetObstacle import GetObstacle

1 1sObstacle import isObstacle

1 GetPath i“a‘f
def Astar (obstacle,start,goal):
G=0
path=mat ([[0,0]])
open list=mat ([[start[0,0]],

[start[0,1]117,
[G+H (start,goal)],

[start([0,0]1,

[start[0,1]]]) .transpose ()

close list=mat([[0,0,0,0,0]])

next move=MotionModel ()

findFlag=False
while findFlag==False:
if len(open list)==

print ("No path to GOAL.")

return

open list=open list[lexsort ((open list.view(ndarray) [:,2],))]

i1f isSamePosition (open 1ist[0,0:2],goal):

print ("Optimal path found.")

close list=vstack((open 1ist[0,:],close list))

open list=delete (open list, 0, =0)
findFlag=True

-
break

-~ index in range (0, len(next movel[:,0])) :

m=mat ([[open 1ist[0,0]+next move[index,0]],

[open 1ist[0,1]+next move[index,1]],

[0]]) .transpose ()

G=next move[index,2]+H(m[0:2],gocal)
m[0,2]=G

i1f isObstacle (m,obstacle) :

list flag=FindList (m,open list,close list)

if list flag==1:

continue

elif list flag==2:

~c +1n17
continue

else:

temp=hstack ((m, [[open 1ist[0,0]]], [[open 1ist([0,1]1]1]))

open list=vstack((open list, temp))

if findFlag==False:

close list=vstack((open 1list[0,:],close list))

open list=delete (open list, 0,

close list=delete(close list,-1,

path=GetPath (close list,start)

return path

T .

== ' main
start point=mat ([[1,1]])
end point=mat ([[4,4]])
obstacle=GetBoundary (5)
print ("Unit Test - Astar: ", Astar (obstacle,start point,end point))

import time, RPi.GPIO, threading
from LED import led flash
from STEPPER import stepper

msl pin=14
ms2 pin=14

ms3 pin=14

enable pin=14

front left step pin=26
front left dir pin=19
back left dir pin=13
back left step pin=6
front right dir pin=3
front right step pin=2
back right dir pin=27
back right step pin=17

front left stepper=stepper (front left step pin, front left dir pin,msl pin,
ms2 pin,ms3 pin,enable pin, 0)

back left stepper=stepper (back left step pin,back left dir pin,msl pin,ms2
_pin,ms3 pin,enable pin,0)

front right stepper=stepper (front right step pin, front right dir pin,msl p

in,ms2 pin,ms3 pin,enable pin,0)

back right stepper=stepper (back right step pin,back right dir pin,msl pin,

ms2 pin,ms3 pin,enable pin, 0)

threads=[]
taskl=threading.Thread (=front left stepper.steps,
threads.append (taskl)
task2=threading.Thread (=back left stepper.steps,
threads.append (task?)
task3=threading.Thread (=front right stepper.steps,
threads.append (task3)
taskd=threading.Thread (=back right stepper.steps,
threads.append (task4)

== ' main ':

print ("RUNNING...")

for t in threads:
t.setDaemon (True)
t.start ()
t.join ()
except KeyboardInterrupt:

RPi.GPIO.cleanup ()

57

Section Ill: Mapping Algorithms, Theory

Dynamic Programming Algorithm:
Xps1 = felXe us) = X + U,

T—1
J(Yer—1) = gr(xr) + Z G (Xe, Vi)
t=0

¥e (x) = argmin g, (x;, w,) + Veiog (fe(Xe, w2)

g

V() = “tlilrn Ge (X, Ue) + Vi (e (X, ue)

where

xt-: state, trajectory
ut: action

yt*: optimal policy

J: total operation cost
Vt: optimal cost-to-go
gt: operation cost

Dijkstra’s Algorithm:
V,=0
¥e(x,) = argmin g, (x,, u,), t=201,..,T—1

Uy

where n is the index of next state,

G is the operation cost function as the total actual cost from the start point to the next
state,

F is the total evaluation cost, also known as priority.

58

END

STATE1 STATE 2 STATE 3 STATE4
Figure B 7: Example of Dijkstra’s Algorithm

Table B 1: The process of Dijkstra’s Algorithm

T—1
t Xt Xev1 gr Z g (Xt ¥e) J Uy Ve
:

1 A B 3 0 3 A-B

1 A C 1 0 1 A-C A-C
2 B C 3 3 6 B-C

2 B D 2 3 4 B-D B-D
2 C D 4 1 5 C-D

2 C E 3 1 4 C-E C-E

By backpropagating to reach endpoint G, the optimal policy is Eto G, and Cto E and A
to C.

Best-First Search Algorithm:
g:=0
Ve (xe) = argmin Vip, (f (X, u)) t=01,..,T—-1
Ug

59

F,

n

=H

n

where H is the heuristic estimated cost-to-go, estimated distance from next state n to
the goal.

Best-First Search Algorithm greatly speeded up the search but sacrificed the optimality.
Many times, the strategy is not optlmal apparently

START:
[

0123456 THFOHIRAIANNTT VR RLDRDVDD 0D DODE DEGRN AL ABNRRTZ

Figure B 8: Dijkstra’s Algorithm, cost 56.14

IS TR RSN TSI TN DO IR R E R RE R

Figure B 9: Best First Search Algorithm, cost 76.08

A* Algorithm, Dynamic Programming

In 1968, Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute
(now SRI International) first published A* (A star) algorithm, which is a Best-First or
informed search idea and using heuristics to guide its search, and it can be seen as a
combination with Dijkstra's algorithm and Best-First Search Algorithm.

60

A* Algorithm:

Fn = l‘:';Zl‘il. + Hn
For each step, A* algorithm tries to find the minimum F in all the possible next searching
choices, and by minimizing the operation cost

-1
] =gr(en)+) gelxes)
t=0

to find out the optimal one until the goal is reached. After that, using backpropagation,
from goal to start, it backtracks these choices to generate the policy y*, which is the
optimal path.

61

Appendix C

62

Meeting Minutes:

September 05, 2019

Meeting with the Professor Fought
Team 4: Go-Ge Power Rangers
Date: September 5, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,
Yuan You, Professor Fought

Matt starts by explaining the idea of the fire fighting UGV

Fought points out the specific functions robot will have to accomplish for that idea
o Small autonomous vehicle can’t hold enough extinguisher

Decided to account for navigation and mapping only

Optimize the scale to something we can manage while also holding all

components needed

A problem statement needs to be determined that will work with the project

Stretch goals will be added to the project if extra time is there

Project will have 3 different parts: Robot Build, Navigation, and Mapping

63

September 12, 2019

Interim Meeting with the Professor Fought
Team 4: Go Go Power Rangers
Date: September 12, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,
Yuan You, Professor Fought

Emily explains UGV to map out room and show back to user

Professor Fought says keep story consistent throughout report

Don’t include prototype ideas until the design report

Plan for mapping hallways in Caldwell, Baker Systems, and Dreese

System block diagram is a representation of the product

Work Breakdown Structure (WBS) is a list of tasks along with who is assigned

those tasks

e Milestones are events, not tasks

o Atask is research which software to use, milestone is a software is
selected

64

September 17, 2019

Meeting with the Professor Fought
Team 4: Go Go Power Rangers
Date: September 17, 2019
Attendance: Ryan Hackney, Emily Kong, Yoon Jae Lee, Yuan You, Professor Fought
Discussed schedule to create design concepts for next week
Took a look at motors and sensors in storage for potential use

Plan to meet and pull out specific storage parts on Thursday
Confirmed each section of the team (Navigation, Mapping, Robots)

65

October 03, 2019

Meeting with the Professor Fought
Team 4: Go Go Power Rangers

Presentation Meeting:
Date: October 3, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,
Yuan You, Professor Fought

Team 4 presents problem statement, design concepts and technical evaluation
Professor Fought says

Team 4 presents moving mechanism and algorithm

Professor Fought says algorithm should be clear and precise.

Team 4 presents testing plans, task, milestones and schedules

66

October 23, 2019

Meeting with the Professor Fought
Team 4: Go Go Power Rangers

Parts Receiving and New purchase order Meeting
Date: October 22, 2019

Attendance: Emily Kong, Yoon Jae Lee, Matt Stoner, Professor Fought

Received ordered parts and aware of shipping delay for some parts.

Team 4 discussed power supply and battery charging

Finalize two batteries and one battery for Pi. Checked eligibility and charging
conditions.

Team 4 announced a new purchase order to Professor Fought

Professor Fought informs how to pickup order in person

Plan to meet Thursday for assembly more with 3D printed wheels.

67

November 12, 2019

Meeting with the Professor Fought
Team 4: Go Go Power Rangers
Date: November 12, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,
Yuan You, Professor Fought

Demonstrated the assembled prototype to Professor Fought

Discussed optimized size and locating.

Professor Fought gave advice about sensor operation and the idea of board
connection.

The team discussed circuit wiring

Plan for operating in hallways of Caldwell and Dreese with updated code.

November 21, 2019

Meeting with the Professor Fought

68

Team 4: Go Go Power Rangers
Date: November 21, 2019

Attendance: Ryan Hackney, Devin Hensley, Emily Kong, Yoon Jae Lee, Matt Stoner,
Yuan You, Professor Fought

Demonstrated presentation about Critical Design Review
Professor Fought gave advice about finessing our projects

Plan to update the document in more detail about electrical connections and
software.

November 27, 2019

Meeting with the Professor Fought

Date: November 26, 2019

69

Attendance: Yoon Jae Lee, Yuan You, Professor Fought

e Discussed about rotating issue.
e Professor Fought gave advice about friction and wheels.
e Plan to update some parts for effective and constant moving mechanism.

70

